IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/46216.html
   My bibliography  Save this paper

Estimation in semiparametric models with missing data

Author

Listed:
  • Chen, Songxi

Abstract

This paper considers the problem of parameter estimation in a general class of semiparametric models when observations are subject to missingness at random. The semiparametric models allow for estimating functions that are non-smooth with respect to the parameter. We propose a nonparametric imputation method for the missing values, which then leads to imputed estimating equations for the finite dimensional parameter of interest. The asymptotic normality of the parameter estimator is proved in a general setting, and is investigated in detail for a number of specific semiparametric models. Finally, we study the small sample performance of the proposed estimator via simulations.

Suggested Citation

  • Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:46216
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/46216/1/MPRA_paper_46216.pdf
    File Function: original version
    Download Restriction: no

    File URL: https://mpra.ub.uni-muenchen.de/46277/1/MPRA_paper_46216.pdf
    File Function: revised version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Robinson, Peter M, 1988. "Root- N-Consistent Semiparametric Regression," Econometrica, Econometric Society, vol. 56(4), pages 931-954, July.
    2. Xiaohong Chen & Oliver Linton & Ingrid Van Keilegom, 2003. "Estimation of Semiparametric Models when the Criterion Function Is Not Smooth," Econometrica, Econometric Society, vol. 71(5), pages 1591-1608, September.
    3. Wang, Qihua & Sun, Zhihua, 2007. "Estimation in partially linear models with missing responses at random," Journal of Multivariate Analysis, Elsevier, vol. 98(7), pages 1470-1493, August.
    4. Wang Q. & Linton O. & Hardle W., 2004. "Semiparametric Regression Analysis With Missing Response at Random," Journal of the American Statistical Association, American Statistical Association, vol. 99, pages 334-345, January.
    5. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    6. Qi-Hua Wang, 2009. "Statistical estimation in partial linear models with covariate data missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 47-84, March.
    7. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521370905, October.
    8. Powell, James L & Stock, James H & Stoker, Thomas M, 1989. "Semiparametric Estimation of Index Coefficients," Econometrica, Econometric Society, vol. 57(6), pages 1403-1430, November.
    9. Barnett,William A. & Powell,James & Tauchen,George E. (ed.), 1991. "Nonparametric and Semiparametric Methods in Econometrics and Statistics," Cambridge Books, Cambridge University Press, number 9780521424318, October.
    10. Liang, Hua, 2008. "Generalized partially linear models with missing covariates," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 880-895, May.
    11. D. Zeng & D. Y. Lin, 2007. "Maximum likelihood estimation in semiparametric regression models with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 507-564, September.
    12. Chen, Qingxia & Zeng, Donglin & Ibrahim, Joseph G., 2007. "Sieve Maximum Likelihood Estimation for Regression Models With Covariates Missing at Random," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 1309-1317, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song Chen & Ingrid Van Keilegom, 2013. "Estimation in semiparametric models with missing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 785-805, August.
    2. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    3. Qi Li & Jeffrey Scott Racine, 2006. "Nonparametric Econometrics: Theory and Practice," Economics Books, Princeton University Press, edition 1, volume 1, number 8355.
    4. Ai, Chunrong & Chen, Xiaohong, 2007. "Estimation of possibly misspecified semiparametric conditional moment restriction models with different conditioning variables," Journal of Econometrics, Elsevier, vol. 141(1), pages 5-43, November.
    5. Mammen, Enno & Rothe, Christoph & Schienle, Melanie, 2016. "Semiparametric Estimation With Generated Covariates," Econometric Theory, Cambridge University Press, vol. 32(5), pages 1140-1177, October.
    6. Hidehiko Ichimura & Whitney K. Newey, 2022. "The influence function of semiparametric estimators," Quantitative Economics, Econometric Society, vol. 13(1), pages 29-61, January.
    7. Ichimura, Hidehiko & Lee, Sokbae, 2010. "Characterization of the asymptotic distribution of semiparametric M-estimators," Journal of Econometrics, Elsevier, vol. 159(2), pages 252-266, December.
    8. Arthur Lewbel, 2000. "Asymptotic Trimming for Bounded Density Plug-in Estimators," Boston College Working Papers in Economics 479, Boston College Department of Economics, revised 30 Oct 2000.
    9. repec:hum:wpaper:sfb649dp2014-043 is not listed on IDEAS
    10. Song, Kyungchul, 2010. "Testing semiparametric conditional moment restrictions using conditional martingale transforms," Journal of Econometrics, Elsevier, vol. 154(1), pages 74-84, January.
    11. Victor Chernozhukov & Juan Carlos Escanciano & Hidehiko Ichimura & Whitney K. Newey & James M. Robins, 2022. "Locally Robust Semiparametric Estimation," Econometrica, Econometric Society, vol. 90(4), pages 1501-1535, July.
    12. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    13. Escanciano, Juan Carlos & Jacho-Chávez, David T. & Lewbel, Arthur, 2014. "Uniform convergence of weighted sums of non and semiparametric residuals for estimation and testing," Journal of Econometrics, Elsevier, vol. 178(P3), pages 426-443.
    14. M. Hristache & V. Patilea, 2017. "Conditional moment models with data missing at random," Biometrika, Biometrika Trust, vol. 104(3), pages 735-742.
    15. Sadikoglu, Serhan, 2019. "Essays in econometric theory," Other publications TiSEM 99d83644-f9dc-49e3-a4e1-5, Tilburg University, School of Economics and Management.
    16. Zhangong Zhou & Linjun Tang, 2019. "Testing for parametric component of partially linear models with missing covariates," Statistical Papers, Springer, vol. 60(3), pages 747-760, June.
    17. Qi-Hua Wang, 2009. "Statistical estimation in partial linear models with covariate data missing at random," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(1), pages 47-84, March.
    18. Ahn, Hyungtaik, 1995. "Nonparametric two-stage estimation of conditional choice probabilities in a binary choice model under uncertainty," Journal of Econometrics, Elsevier, vol. 67(2), pages 337-378, June.
    19. Tianfa Xie & Zhihua Sun & Liuquan Sun, 2012. "A consistent model specification test for a partial linear model with covariates missing at random," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 841-856, December.
    20. Chen, Xiaohong & Pouzo, Demian, 2009. "Efficient estimation of semiparametric conditional moment models with possibly nonsmooth residuals," Journal of Econometrics, Elsevier, vol. 152(1), pages 46-60, September.
    21. Alexandre Belloni & Victor Chernozhukov & Ivan Fernandez-Val & Christian Hansen, 2013. "Program evaluation with high-dimensional data," CeMMAP working papers CWP77/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    More about this item

    Keywords

    Copulas; imputation; kernel smoothing; missing at random; nuisance function; partially linear model; semiparametric model; single index model.;
    All these keywords.

    JEL classification:

    • C0 - Mathematical and Quantitative Methods - - General
    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C2 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables
    • C3 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling
    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • C7 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory
    • C8 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs
    • C9 - Mathematical and Quantitative Methods - - Design of Experiments
    • G0 - Financial Economics - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:46216. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.