IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v27y2018i3d10.1007_s11749-017-0562-2.html
   My bibliography  Save this article

Estimation and variable selection for semiparametric transformation models under a more efficient cohort sampling design

Author

Listed:
  • Mingzhe Wu

    (Fudan University)

  • Ming Zheng

    (Fudan University)

  • Wen Yu

    (Fudan University)

  • Ruofan Wu

    (Fudan University)

Abstract

Two-phase cohort sampling designs, or sometimes known as retrospective sampling designs, are often used in large cohort studies for saving sampling time and cost. Commonly used designs include case–cohort design, case–control design, nested case–control design, and so on. Efforts had been taken to improve the estimation efficiency under these commonly used designs. We propose a different retrospective sampling design, called end-point design, under the class of semiparametric transformation models. An inverse probability weighting likelihood approach is designed for estimating the model parameters, and the proposed design shows higher efficiency than the case–cohort and case–control design with comparable size of covariates ascertainment. We also consider variable selection under the proposed design. A specially designed objective function with adaptive lasso penalty is proposed. The large sample properties of the proposed estimation and variable selection procedure are developed. Extensive simulation studies are carried out to show favorable evidence for the proposed approaches. A real data set is analyzed for illustration.

Suggested Citation

  • Mingzhe Wu & Ming Zheng & Wen Yu & Ruofan Wu, 2018. "Estimation and variable selection for semiparametric transformation models under a more efficient cohort sampling design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 570-596, September.
  • Handle: RePEc:spr:testjl:v:27:y:2018:i:3:d:10.1007_s11749-017-0562-2
    DOI: 10.1007/s11749-017-0562-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11749-017-0562-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11749-017-0562-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. S. Kim & J. Cai & W. Lu, 2013. "More efficient estimators for case-cohort studies," Biometrika, Biometrika Trust, vol. 100(3), pages 695-708.
    3. Wenbin Lu & Anastasios A. Tsiatis, 2006. "Semiparametric transformation models for the case-cohort study," Biometrika, Biometrika Trust, vol. 93(1), pages 207-214, March.
    4. Lan Kong & Jianwen Cai, 2009. "Case–Cohort Analysis with Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 65(1), pages 135-142, March.
    5. Ai Ni & Jianwen Cai & Donglin Zeng, 2016. "Variable selection for case-cohort studies with failure time outcome," Biometrika, Biometrika Trust, vol. 103(3), pages 547-562.
    6. Xiaoxi Liu & Donglin Zeng, 2013. "Variable selection in semiparametric transformation models for right-censored data," Biometrika, Biometrika Trust, vol. 100(4), pages 859-876.
    7. Donglin Zeng & D. Y. Lin, 2006. "Efficient estimation of semiparametric transformation models for counting processes," Biometrika, Biometrika Trust, vol. 93(3), pages 627-640, September.
    8. Donglin Zeng & D. Y. Lin, 2014. "Efficient Estimation of Semiparametric Transformation Models for Two-Phase Cohort Studies," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(505), pages 371-383, March.
    9. Bin Nan & Menggang Yu & John D. Kalbfleisch, 2006. "Censored linear regression for case-cohort studies," Biometrika, Biometrika Trust, vol. 93(4), pages 747-762, December.
    10. Kani Chen, 2001. "Generalized case–cohort sampling," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 791-809.
    11. D. Zeng & D. Y. Lin, 2007. "Maximum likelihood estimation in semiparametric regression models with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 507-564, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Du, Mingyue & Zhao, Xingqiu & Sun, Jianguo, 2022. "Variable selection for case-cohort studies with informatively interval-censored outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jing Zhang & Haibo Zhou & Yanyan Liu & Jianwen Cai, 2021. "Conditional screening for ultrahigh-dimensional survival data in case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(4), pages 632-661, October.
    2. Jichang Yu & Haibo Zhou & Jianwen Cai, 2021. "Accelerated failure time model for data from outcome-dependent sampling," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 27(1), pages 15-37, January.
    3. Jieli Ding & Tsui-Shan Lu & Jianwen Cai & Haibo Zhou, 2017. "Recent progresses in outcome-dependent sampling with failure time data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(1), pages 57-82, January.
    4. Suhyun Kang & Wenbin Lu & Mengling Liu, 2017. "Efficient estimation for accelerated failure time model under case-cohort and nested case-control sampling," Biometrics, The International Biometric Society, vol. 73(1), pages 114-123, March.
    5. Han, Bo & Wang, Xiaoguang, 2020. "Semiparametric estimation for the non-mixture cure model in case-cohort and nested case-control studies," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    6. Zheng, Ming & Zhao, Ziqiang & Yu, Wen, 2013. "Quantile regression analysis of case-cohort data," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 20-34.
    7. Xi Ning & Yinghao Pan & Yanqing Sun & Peter B. Gilbert, 2023. "A semiparametric Cox–Aalen transformation model with censored data," Biometrics, The International Biometric Society, vol. 79(4), pages 3111-3125, December.
    8. Ying Yan & Haibo Zhou & Jianwen Cai, 2017. "Improving efficiency of parameter estimation in case-cohort studies with multivariate failure time data," Biometrics, The International Biometric Society, vol. 73(3), pages 1042-1052, September.
    9. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    10. Wenyan Zhong & Xuewen Lu & Jingjing Wu, 2021. "Bi-level variable selection in semiparametric transformation models with right-censored data," Computational Statistics, Springer, vol. 36(3), pages 1661-1692, September.
    11. Du, Mingyue & Zhao, Xingqiu & Sun, Jianguo, 2022. "Variable selection for case-cohort studies with informatively interval-censored outcomes," Computational Statistics & Data Analysis, Elsevier, vol. 172(C).
    12. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    13. Huaihou Chen & Donglin Zeng & Yuanjia Wang, 2017. "Penalized nonlinear mixed effects model to identify biomarkers that predict disease progression," Biometrics, The International Biometric Society, vol. 73(4), pages 1343-1354, December.
    14. Jon Arni Steingrimsson & Robert L. Strawderman, 2017. "Estimation in the Semiparametric Accelerated Failure Time Model With Missing Covariates: Improving Efficiency Through Augmentation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(519), pages 1221-1235, July.
    15. Yanqing Sun & Xiyuan Qian & Qiong Shou & Peter B. Gilbert, 2017. "Analysis of two-phase sampling data with semiparametric additive hazards models," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 23(3), pages 377-399, July.
    16. Yayun Xu & Soyoung Kim & Mei-Jie Zhang & David Couper & Kwang Woo Ahn, 2022. "Competing risks regression models with covariates-adjusted censoring weight under the generalized case-cohort design," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(2), pages 241-262, April.
    17. Li, Shuwei & Hu, Tao & Zhao, Xingqiu & Sun, Jianguo, 2019. "A class of semiparametric transformation cure models for interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 153-165.
    18. Tianxi Cai & Thomas A Gerds & Yingye Zheng & Jinbo Chen, 2011. "Robust Prediction of t-Year Survival with Data from Multiple Studies," Biometrics, The International Biometric Society, vol. 67(2), pages 436-444, June.
    19. Chi-Chung Wen & Yi-Hau Chen, 2014. "Semiparametric analysis of incomplete current status outcome data under transformation models," Biometrics, The International Biometric Society, vol. 70(2), pages 335-345, June.
    20. Chia-Hui Huang, 2019. "Mixture regression models for the gap time distributions and illness–death processes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(1), pages 168-188, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:27:y:2018:i:3:d:10.1007_s11749-017-0562-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.