IDEAS home Printed from https://ideas.repec.org/a/taf/jnlasa/v112y2017i518p664-672.html
   My bibliography  Save this article

A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data

Author

Listed:
  • Qingning Zhou
  • Tao Hu
  • Jianguo Sun

Abstract

Interval-censored failure time data arise in a number of fields and many authors have discussed various issues related to their analysis. However, most of the existing methods are for univariate data and there exists only limited research on bivariate data, especially on regression analysis of bivariate interval-censored data. We present a class of semiparametric transformation models for the problem and for inference, a sieve maximum likelihood approach is developed. The model provides a great flexibility, in particular including the commonly used proportional hazards model as a special case, and in the approach, Bernstein polynomials are employed. The strong consistency and asymptotic normality of the resulting estimators of regression parameters are established and furthermore, the estimators are shown to be asymptotically efficient. Extensive simulation studies are conducted and indicate that the proposed method works well for practical situations. Supplementary materials for this article are available online.

Suggested Citation

  • Qingning Zhou & Tao Hu & Jianguo Sun, 2017. "A Sieve Semiparametric Maximum Likelihood Approach for Regression Analysis of Bivariate Interval-Censored Failure Time Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 664-672, April.
  • Handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:664-672
    DOI: 10.1080/01621459.2016.1158113
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/01621459.2016.1158113
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/01621459.2016.1158113?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Chi-Chung & Chen, Yi-Hau, 2011. "Nonparametric maximum likelihood analysis of clustered current status data with the gamma-frailty Cox model," Computational Statistics & Data Analysis, Elsevier, vol. 55(2), pages 1053-1060, February.
    2. Donglin Zeng & Qingxia Chen & Joseph G. Ibrahim, 2009. "Gamma frailty transformation models for multivariate survival times," Biometrika, Biometrika Trust, vol. 96(2), pages 277-291.
    3. William B. Goggins & Dianne M. Finkelstein, 2000. "A Proportional Hazards Model for Multivariate Interval-Censored Failure Time Data," Biometrics, The International Biometric Society, vol. 56(3), pages 940-943, September.
    4. Wang, Naichen & Wang, Lianming & McMahan, Christopher S., 2015. "Regression analysis of bivariate current status data under the Gamma-frailty proportional hazards model using the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 140-150.
    5. Debajyoti Sinha & Ming-Hui Chen & Sujit K. Ghosh, 1999. "Bayesian Analysis and Model Selection for Interval-Censored Survival Data," Biometrics, The International Biometric Society, vol. 55(2), pages 585-590, June.
    6. Richard J. Cook & Leilei Zeng & Ker-Ai Lee, 2008. "A Multistate Model for Bivariate Interval-Censored Failure Time Data," Biometrics, The International Biometric Society, vol. 64(4), pages 1100-1109, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuxiang Wu & Hui Zhao & Jianguo Sun, 2023. "Group variable selection for the Cox model with interval‐censored failure time data," Biometrics, The International Biometric Society, vol. 79(4), pages 3082-3095, December.
    2. Liuquan Sun & Shuwei Li & Lianming Wang & Xinyuan Song & Xuemei Sui, 2022. "Simultaneous variable selection in regression analysis of multivariate interval‐censored data," Biometrics, The International Biometric Society, vol. 78(4), pages 1402-1413, December.
    3. Kin Yau Wong & Qingning Zhou & Tao Hu, 2023. "Semiparametric regression analysis of doubly-censored data with applications to incubation period estimation," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(1), pages 87-114, January.
    4. Chi‐Chung Wen & Yi‐Hau Chen, 2018. "Pseudo and conditional score approach to joint analysis of current count and current status data," Biometrics, The International Biometric Society, vol. 74(4), pages 1223-1231, December.
    5. Chun Yin Lee & Kin Yau Wong & Kwok Fai Lam & Dipankar Bandyopadhyay, 2023. "A semiparametric joint model for cluster size and subunit‐specific interval‐censored outcomes," Biometrics, The International Biometric Society, vol. 79(3), pages 2010-2022, September.
    6. Baihua He & Yanyan Liu & Yuanshan Wu & Xingqiu Zhao, 2020. "Semiparametric efficient estimation for additive hazards regression with case II interval-censored survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 708-730, October.
    7. Chun Yin Lee & Kin Yau Wong & K. F. Lam & Jinfeng Xu, 2022. "Analysis of clustered interval‐censored data using a class of semiparametric partly linear frailty transformation models," Biometrics, The International Biometric Society, vol. 78(1), pages 165-178, March.
    8. Yichen Lou & Peijie Wang & Jianguo Sun, 2023. "A semi-parametric weighted likelihood approach for regression analysis of bivariate interval-censored outcomes from case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 628-653, July.
    9. Qingning Zhou & Jianwen Cai & Haibo Zhou, 2018. "Outcome†dependent sampling with interval†censored failure time data," Biometrics, The International Biometric Society, vol. 74(1), pages 58-67, March.
    10. Mengzhu Yu & Mingyue Du, 2022. "Regression Analysis of Multivariate Interval-Censored Failure Time Data under Transformation Model with Informative Censoring," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    11. Liu, Xiaoyu & Xiang, Liming, 2021. "Generalized accelerated hazards mixture cure models with interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 161(C).
    12. Botosaru, Irene, 2020. "Nonparametric analysis of a duration model with stochastic unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 217(1), pages 112-139.
    13. Peijie Wang & Danning Li & Jianguo Sun, 2021. "A pairwise pseudo‐likelihood approach for left‐truncated and interval‐censored data under the Cox model," Biometrics, The International Biometric Society, vol. 77(4), pages 1303-1314, December.
    14. Petti, Danilo & Eletti, Alessia & Marra, Giampiero & Radice, Rosalba, 2022. "Copula link-based additive models for bivariate time-to-event outcomes with general censoring scheme," Computational Statistics & Data Analysis, Elsevier, vol. 175(C).
    15. Liu, Wenting & Li, Huiqiong & Tang, Niansheng & Lyu, Jun, 2024. "Variational Bayesian approach for analyzing interval-censored data under the proportional hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 195(C).
    16. Tao Sun & Ying Ding, 2023. "Neural network on interval‐censored data with application to the prediction of Alzheimer's disease," Biometrics, The International Biometric Society, vol. 79(3), pages 2677-2690, September.
    17. Yudong Wang & Zhi‐Sheng Ye & Hongyuan Cao, 2021. "On computation of semiparametric maximum likelihood estimators with shape constraints," Biometrics, The International Biometric Society, vol. 77(1), pages 113-124, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Donglin Zeng & Fei Gao & D. Y. Lin, 2017. "Maximum likelihood estimation for semiparametric regression models with multivariate interval-censored data," Biometrika, Biometrika Trust, vol. 104(3), pages 505-525.
    2. Gamage, Prabhashi W. Withana & McMahan, Christopher S. & Wang, Lianming & Tu, Wanzhu, 2018. "A Gamma-frailty proportional hazards model for bivariate interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 128(C), pages 354-366.
    3. David B. Dunson & Gregg E. Dinse, 2002. "Bayesian Models for Multivariate Current Status Data with Informative Censoring," Biometrics, The International Biometric Society, vol. 58(1), pages 79-88, March.
    4. Wang, Naichen & Wang, Lianming & McMahan, Christopher S., 2015. "Regression analysis of bivariate current status data under the Gamma-frailty proportional hazards model using the EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 83(C), pages 140-150.
    5. Li, Shuwei & Hu, Tao & Wang, Peijie & Sun, Jianguo, 2017. "Regression analysis of current status data in the presence of dependent censoring with applications to tumorigenicity experiments," Computational Statistics & Data Analysis, Elsevier, vol. 110(C), pages 75-86.
    6. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    7. He, W., 2014. "Analysis of multivariate survival data with Clayton regression models under conditional and marginal formulations," Computational Statistics & Data Analysis, Elsevier, vol. 74(C), pages 52-63.
    8. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    9. Ying Zhang & Lei Hua & Jian Huang, 2010. "A Spline‐Based Semiparametric Maximum Likelihood Estimation Method for the Cox Model with Interval‐Censored Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(2), pages 338-354, June.
    10. Chen, Ling & Sun, Jianguo, 2010. "A multiple imputation approach to the analysis of interval-censored failure time data with the additive hazards model," Computational Statistics & Data Analysis, Elsevier, vol. 54(4), pages 1109-1116, April.
    11. Meei Pyng Ng, 2002. "A Modification of Peto's Nonparametric Estimation of Survival Curves for Interval-Censored Data," Biometrics, The International Biometric Society, vol. 58(2), pages 439-442, June.
    12. Du, Mingyue & Li, Huiqiong & Sun, Jianguo, 2021. "Regression analysis of censored data with nonignorable missing covariates and application to Alzheimer Disease," Computational Statistics & Data Analysis, Elsevier, vol. 157(C).
    13. Yichen Lou & Peijie Wang & Jianguo Sun, 2023. "A semi-parametric weighted likelihood approach for regression analysis of bivariate interval-censored outcomes from case-cohort studies," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 628-653, July.
    14. Mengzhu Yu & Mingyue Du, 2022. "Regression Analysis of Multivariate Interval-Censored Failure Time Data under Transformation Model with Informative Censoring," Mathematics, MDPI, vol. 10(18), pages 1-17, September.
    15. Peter Congdon, 2008. "The need for psychiatric care in England: a spatial factor methodology," Journal of Geographical Systems, Springer, vol. 10(3), pages 217-239, September.
    16. Lianming Wang & David B. Dunson, 2011. "Semiparametric Bayes' Proportional Odds Models for Current Status Data with Underreporting," Biometrics, The International Biometric Society, vol. 67(3), pages 1111-1118, September.
    17. González, M. & Minuesa, C. & del Puerto, I., 2016. "Maximum likelihood estimation and expectation–maximization algorithm for controlled branching processes," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 209-227.
    18. Baihua He & Yanyan Liu & Yuanshan Wu & Xingqiu Zhao, 2020. "Semiparametric efficient estimation for additive hazards regression with case II interval-censored survival data," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 26(4), pages 708-730, October.
    19. Jialiang Li & Tonghui Yu & Jing Lv & Mei‐Ling Ting Lee, 2021. "Semiparametric model averaging prediction for lifetime data via hazards regression," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(5), pages 1187-1209, November.
    20. Francisco J. Rubio & Keming Yu, 2017. "Flexible objective Bayesian linear regression with applications in survival analysis," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(5), pages 798-810, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:jnlasa:v:112:y:2017:i:518:p:664-672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/UASA20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.