IDEAS home Printed from https://ideas.repec.org/a/bla/scjsta/v42y2015i4p1149-1166.html
   My bibliography  Save this article

Clustered Survival Data with Left-truncation

Author

Listed:
  • Frank Eriksson
  • Torben Martinussen
  • Thomas H. Scheike

Abstract

type="main" xml:id="sjos12157-abs-0001"> Left-truncation occurs frequently in survival studies, and it is well known how to deal with this for univariate survival times. However, there are few results on how to estimate dependence parameters and regression effects in semiparametric models for clustered survival data with delayed entry. Surprisingly, existing methods only deal with special cases. In this paper, we clarify different kinds of left-truncation and suggest estimators for semiparametric survival models under specific truncation schemes. The large-sample properties of the estimators are established. Small-sample properties are investigated via simulation studies, and the suggested estimators are used in a study of prostate cancer based on the Finnish twin cohort where a twin pair is included only if both twins were alive in 1974.

Suggested Citation

  • Frank Eriksson & Torben Martinussen & Thomas H. Scheike, 2015. "Clustered Survival Data with Left-truncation," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(4), pages 1149-1166, December.
  • Handle: RePEc:bla:scjsta:v:42:y:2015:i:4:p:1149-1166
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/sjos.12157
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Christian Bressen Pipper & Torben Martinussen, 2004. "An estimating equation for parametric shared frailty models with marginal additive hazards," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 207-220, February.
    2. Gerard J. van den Berg & Bettina Drepper, 2016. "Inference for Shared-Frailty Survival Models with Left-Truncated Data," Econometric Reviews, Taylor & Francis Journals, vol. 35(6), pages 1075-1098, June.
    3. D. V. Glidden & S. G. Self, 1999. "Semiparametric Likelihood Estimation in the Clayton–Oakes Failure Time Model," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 26(3), pages 363-372, September.
    4. Christian Bressen Pipper & Torben Martinussen, 2003. "A Likelihood Based Estimating Equation for the Clayton–Oakes Model with Marginal Proportional Hazards," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 30(3), pages 509-521, September.
    5. E. T. Parner, 2001. "A Composite Likelihood Approach to Multivariate Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(2), pages 295-302, June.
    6. D. Zeng & D. Y. Lin, 2007. "Maximum likelihood estimation in semiparametric regression models with censored data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 507-564, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie Böhnstedt & Jutta Gampe & Monique A. A. Caljouw & Hein Putter, 2023. "Incorporating delayed entry into the joint frailty model for recurrent events and a terminal event," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 29(3), pages 585-607, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. C. B. Pipper & C. Ritz & T. H. Scheike, 2011. "Explained Variation in a Fully Specified Model for Data-Grouped Survival Data," Biometrics, The International Biometric Society, vol. 67(4), pages 1361-1368, December.
    2. Dandan Liu & John D. Kalbfleisch & Douglas E. Schaubel, 2011. "A Positive Stable Frailty Model for Clustered Failure Time Data with Covariate-Dependent Frailty," Biometrics, The International Biometric Society, vol. 67(1), pages 8-17, March.
    3. Lu Chen & Li Hsu & Kathleen Malone, 2009. "A Frailty-Model-Based Approach to Estimating the Age-Dependent Penetrance Function of Candidate Genes Using Population-Based Case-Control Study Designs: An Application to Data on the BRCA1 Gene," Biometrics, The International Biometric Society, vol. 65(4), pages 1105-1114, December.
    4. Jin Wang & Donglin Zeng & D. Y. Lin, 2022. "Semiparametric single-index models for optimal treatment regimens with censored outcomes," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 28(4), pages 744-763, October.
    5. Jose Garcia-Louzao & Linas Tarasonis, 2023. "Productivity-enhancing reallocation during the Great Recession: evidence from Lithuania," Oxford Economic Papers, Oxford University Press, vol. 75(3), pages 729-749.
    6. Paik, Jane & Ying, Zhiliang, 2012. "A composite likelihood approach for spatially correlated survival data," Computational Statistics & Data Analysis, Elsevier, vol. 56(1), pages 209-216, January.
    7. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.
    8. Jin-Jian Hsieh & A. Adam Ding & Weijing Wang, 2011. "Regression Analysis for Recurrent Events Data under Dependent Censoring," Biometrics, The International Biometric Society, vol. 67(3), pages 719-729, September.
    9. Yanqing Sun & Rajeshwari Sundaram & Yichuan Zhao, 2009. "Empirical Likelihood Inference for the Cox Model with Time‐dependent Coefficients via Local Partial Likelihood," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 36(3), pages 444-462, September.
    10. Chen, Songxi, 2012. "Estimation in semiparametric models with missing data," MPRA Paper 46216, University Library of Munich, Germany.
    11. Mingzhe Wu & Ming Zheng & Wen Yu & Ruofan Wu, 2018. "Estimation and variable selection for semiparametric transformation models under a more efficient cohort sampling design," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 570-596, September.
    12. Fei Jiang & Sebastien Haneuse, 2017. "A Semi-parametric Transformation Frailty Model for Semi-competing Risks Survival Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 44(1), pages 112-129, March.
    13. Chyong-Mei Chen & Pao-sheng Shen & Yi Liu, 2021. "On semiparametric transformation model with LTRC data: pseudo likelihood approach," Statistical Papers, Springer, vol. 62(1), pages 3-30, February.
    14. Hellwig, Michael & Hüschelrath, Kai, 2018. "When Do Firms Leave Cartels? Determinants And The Impact On Cartel Survival," International Review of Law and Economics, Elsevier, vol. 54(C), pages 68-84.
    15. Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Oct 2020.
    16. Mondal, Shoubhik & Subramanian, Sundarraman, 2014. "Model assisted Cox regression," Journal of Multivariate Analysis, Elsevier, vol. 123(C), pages 281-303.
    17. Haywood, Luke, 2016. "Wealth effects on job preferences," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 38, pages 1-11.
    18. Alexander Begun & Anatoli Yashin, 2019. "Study of the bivariate survival data using frailty models based on Lévy processes," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 103(1), pages 37-67, March.
    19. Song Chen & Ingrid Van Keilegom, 2013. "Estimation in semiparametric models with missing data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(4), pages 785-805, August.
    20. Hyokyoung G. Hong & Xuerong Chen & David C. Christiani & Yi Li, 2018. "Integrated powered density: Screening ultrahigh dimensional covariates with survival outcomes," Biometrics, The International Biometric Society, vol. 74(2), pages 421-429, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:scjsta:v:42:y:2015:i:4:p:1149-1166. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0303-6898 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.