IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v175y2023ip1s0960077923008561.html
   My bibliography  Save this article

Stability and Hopf bifurcation of a multiple delayed predator–prey system with fear effect, prey refuge and Crowley–Martin function

Author

Listed:
  • Liang, Ziwei
  • Meng, Xinyou

Abstract

In this paper, we consider a predator–prey model with fear response delay, gestation delay, fear effect, prey refuge, harvesting and Crowley–Martin type functional response. First, we discuss the model without delays and corroborate the positivity and boundedness of the solution. Then, we give some sufficient conditions for the existence and stability of three equilibriums. For the model with delays, we not only analyze the local stability of the positive equilibrium and the occurrence of Hopf bifurcation, but also obtain the crossing curves to study the stability switches of the positive equilibrium on the delays plane. Furthermore, we calculate the normal form of Hopf bifurcation and hence get the direction of Hopf bifurcation and the stability of bifurcated periodic solutions. At last, we support our findings by numerical simulations.

Suggested Citation

  • Liang, Ziwei & Meng, Xinyou, 2023. "Stability and Hopf bifurcation of a multiple delayed predator–prey system with fear effect, prey refuge and Crowley–Martin function," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
  • Handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008561
    DOI: 10.1016/j.chaos.2023.113955
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923008561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Huisen & Cai, Yongli & Fu, Shengmao & Wang, Weiming, 2019. "Impact of the fear effect in a prey-predator model incorporating a prey refuge," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 328-337.
    2. Alison R Holt & Zoe G Davies & Claire Tyler & Samantha Staddon, 2008. "Meta-Analysis of the Effects of Predation on Animal Prey Abundance: Evidence from UK Vertebrates," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-8, June.
    3. Evan L Preisser & Daniel I Bolnick, 2008. "The Many Faces of Fear: Comparing the Pathways and Impacts of Nonconsumptive Predator Effects on Prey Populations," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-8, June.
    4. Zhang, Shengqiang & Yuan, Sanling & Zhang, Tonghua, 2022. "A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments," Applied Mathematics and Computation, Elsevier, vol. 413(C).
    5. Mukherjee, Debasis, 2020. "Role of fear in predator–prey system with intraspecific competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 263-275.
    6. Khajanchi, Subhas & Banerjee, Sandip, 2017. "Role of constant prey refuge on stage structure predator–prey model with ratio dependent functional response," Applied Mathematics and Computation, Elsevier, vol. 314(C), pages 193-198.
    7. Wang, Yong & Zhou, Xu & Jiang, Weihua, 2023. "Bifurcations in a diffusive predator–prey system with linear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    8. Dubey, Balram & Sajan, & Kumar, Ankit, 2021. "Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 164-192.
    9. Shang, Zuchong & Qiao, Yuanhua, 2023. "Multiple bifurcations in a predator–prey system of modified Holling and Leslie type with double Allee effect and nonlinear harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 745-764.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dipesh Barman & Ranjit Kumar Upadhyay, 2023. "Modelling Predator–Prey Interactions: A Trade-Off between Seasonality and Wind Speed," Mathematics, MDPI, vol. 11(23), pages 1-26, December.
    2. Qingyi Cui & Changjin Xu & Wei Ou & Yicheng Pang & Zixin Liu & Peiluan Li & Lingyun Yao, 2023. "Bifurcation Behavior and Hybrid Controller Design of a 2D Lotka–Volterra Commensal Symbiosis System Accompanying Delay," Mathematics, MDPI, vol. 11(23), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yousef, Fatma Bozkurt & Yousef, Ali & Maji, Chandan, 2021. "Effects of fear in a fractional-order predator-prey system with predator density-dependent prey mortality," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    2. Das, Meghadri & Samanta, G.P., 2020. "A delayed fractional order food chain model with fear effect and prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 218-245.
    3. Mukherjee, Debasis, 2020. "Role of fear in predator–prey system with intraspecific competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 263-275.
    4. Umrao, Anuj Kumar & Roy, Subarna & Tiwari, Pankaj Kumar & Srivastava, Prashant K., 2024. "Dynamical behaviors of autonomous and nonautonomous models of generalist predator–prey system with fear, mutual interference and nonlinear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    5. Das, Bijoy Kumar & Sahoo, Debgopal & Samanta, G.P., 2022. "Impact of fear in a delay-induced predator–prey system with intraspecific competition within predator species," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 134-156.
    6. Sahu, S.R. & Raw, S.N., 2023. "Appearance of chaos and bi-stability in a fear induced delayed predator–prey system: A mathematical modeling study," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    7. Dubey, Balram & Sajan, & Kumar, Ankit, 2021. "Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 164-192.
    8. Ma, Yuanyuan & Dong, Nan & Liu, Na & Xie, Leilei, 2022. "Spatiotemporal and bifurcation characteristics of a nonlinear prey-predator model," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    9. Liu, Junli & Liu, Bairu & Lv, Pan & Zhang, Tailei, 2021. "An eco-epidemiological model with fear effect and hunting cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Zhang, Baoxiang & Cai, Yongli & Wang, Bingxian & Wang, Weiming, 2019. "Pattern formation in a reaction–diffusion parasite–host model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 732-740.
    11. Xiaoran Wang & Huimei Liu & Wencai Zhao, 2024. "A Predator–Prey System with a Modified Leslie–Gower and Prey Stage Structure Scheme in Deterministic and Stochastic Environments," Mathematics, MDPI, vol. 12(15), pages 1-26, July.
    12. Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    13. Chen Zhang & Xianyi Li, 2023. "Dynamics of a Discrete Leslie–Gower Model with Harvesting and Holling-II Functional Response," Mathematics, MDPI, vol. 11(15), pages 1-19, July.
    14. Liu, Qun & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed & Ahmad, Bashir, 2020. "Stationary distribution of a stochastic cholera model between communities linked by migration," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    15. Wang, Fatao & Yang, Ruizhi, 2023. "Spatial pattern formation driven by the cross-diffusion in a predator–prey model with Holling type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    16. Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2024. "Cross-diffusion mediated Spatiotemporal patterns in a predator–prey system with hunting cooperation and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 128-147.
    17. Kumbhakar, Ruma & Hossain, Mainul & Karmakar, Sarbari & Pal, Nikhil, 2024. "An investigation of the parameter space in a tri-trophic food chain model with refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 217(C), pages 37-59.
    18. Kumbhakar, Ruma & Hossain, Mainul & Pal, Nikhil, 2024. "Dynamics of a two-prey one-predator model with fear and group defense: A study in parameter planes," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    19. Kaur, Rajinder Pal & Sharma, Amit & Sharma, Anuj Kumar, 2021. "Impact of fear effect on plankton-fish system dynamics incorporating zooplankton refuge," Chaos, Solitons & Fractals, Elsevier, vol. 143(C).
    20. Narayan Mondal & Dipesh Barman & Shariful Alam, 2021. "Impact of adult predator incited fear in a stage-structured prey–predator model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9280-9307, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:175:y:2023:i:p1:s0960077923008561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.