IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920308869.html
   My bibliography  Save this article

An eco-epidemiological model with fear effect and hunting cooperation

Author

Listed:
  • Liu, Junli
  • Liu, Bairu
  • Lv, Pan
  • Zhang, Tailei

Abstract

In this paper, we propose an eco-epidemiological model with disease in the prey population, the model incorporates fear effect of predators on prey and hunting cooperation among predators. We assume that fear can reduce the reproduction rate of the prey population and lower the activity of the prey population, which consequently lowers the disease transmission rate. Mathematical analysis of the model with regard to the non-negativity, boundedness of solutions, stability of equilibria, permanence of the model system are analyzed. The model undergoes backward bifurcation and bistability. We conduct extensive numerical simulations to explore the roles of fear effect, hunting cooperation and other biologically related parameters (e.g. disease transmission rate of prey, death rate of predators), it is found that low levels of fear and hunting cooperation can stabilize the eco-epidemiological system, however, relatively high levels of fear and hunting cooperation can induce limit cycles. Numerical simulations show the occurrence of multiple limit cycles. It is also observed that the system shows limit cycle oscillations for small disease transmission rate/death rate of predators, and the system becomes stable when the disease transmission rate/death rate of predators is high.

Suggested Citation

  • Liu, Junli & Liu, Bairu & Lv, Pan & Zhang, Tailei, 2021. "An eco-epidemiological model with fear effect and hunting cooperation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308869
    DOI: 10.1016/j.chaos.2020.110494
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308869
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sharma, Swarnali & Samanta, G.P., 2015. "A Leslie–Gower predator–prey model with disease in prey incorporating a prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 70(C), pages 69-84.
    2. Fangyuan Hua & Kathryn E. Sieving & Robert J. Fletcher & Chloe A. Wright, 2014. "Increased perception of predation risk to adults and offspring alters avian reproductive strategy and performance," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(3), pages 509-519.
    3. Evan L Preisser & Daniel I Bolnick, 2008. "The Many Faces of Fear: Comparing the Pathways and Impacts of Nonconsumptive Predator Effects on Prey Populations," PLOS ONE, Public Library of Science, vol. 3(6), pages 1-8, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pal, Debjit & Kesh, Dipak & Mukherjee, Debasis, 2024. "Cross-diffusion mediated Spatiotemporal patterns in a predator–prey system with hunting cooperation and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 128-147.
    2. Tian, Yuan & Li, Huanmeng & Sun, Kaibiao, 2024. "Complex dynamics of a fishery model: Impact of the triple effects of fear, cooperative hunting and intermittent harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 31-48.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, Vandana & Tripathi, Jai Prakash & Mishra, Swati & Upadhyay, Ranjit Kumar, 2020. "Modeling the fear effect and stability of non-equilibrium patterns in mutually interfering predator–prey systems," Applied Mathematics and Computation, Elsevier, vol. 371(C).
    2. Kumbhakar, Ruma & Hossain, Mainul & Pal, Nikhil, 2024. "Dynamics of a two-prey one-predator model with fear and group defense: A study in parameter planes," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    3. Sahu, S.R. & Raw, S.N., 2023. "Appearance of chaos and bi-stability in a fear induced delayed predator–prey system: A mathematical modeling study," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    4. Dubey, Balram & Sajan, & Kumar, Ankit, 2021. "Stability switching and chaos in a multiple delayed prey–predator model with fear effect and anti-predator behavior," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 164-192.
    5. Roy, Jyotirmoy & Alam, Shariful, 2020. "Fear factor in a prey–predator system in deterministic and stochastic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    6. Thirthar, Ashraf Adnan & Majeed, Salam J. & Alqudah, Manar A. & Panja, Prabir & Abdeljawad, Thabet, 2022. "Fear effect in a predator-prey model with additional food, prey refuge and harvesting on super predator," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    7. Yangyang Su & Tongqian Zhang, 2022. "Global Dynamics of a Predator–Prey Model with Fear Effect and Impulsive State Feedback Control," Mathematics, MDPI, vol. 10(8), pages 1-23, April.
    8. Hossain, Mainul & Pal, Nikhil & Samanta, Sudip, 2020. "Impact of fear on an eco-epidemiological model," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    9. Seralan Vinoth & R. Vadivel & Nien-Tsu Hu & Chin-Sheng Chen & Nallappan Gunasekaran, 2023. "Bifurcation Analysis in a Harvested Modified Leslie–Gower Model Incorporated with the Fear Factor and Prey Refuge," Mathematics, MDPI, vol. 11(14), pages 1-25, July.
    10. Agus Suryanto & Isnani Darti, 2019. "Dynamics of Leslie-Gower Pest-Predator Model with Disease in Pest Including Pest-Harvesting and Optimal Implementation of Pesticide," International Journal of Mathematics and Mathematical Sciences, Hindawi, vol. 2019, pages 1-9, June.
    11. Kimberley J. Mathot & Josue David Arteaga-Torres & Anne Besson & Deborah M. Hawkshaw & Natasha Klappstein & Rebekah A. McKinnon & Sheeraja Sridharan & Shinichi Nakagawa, 2024. "A systematic review and meta-analysis of unimodal and multimodal predation risk assessment in birds," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    12. Panday, Pijush & Samanta, Sudip & Pal, Nikhil & Chattopadhyay, Joydev, 2020. "Delay induced multiple stability switch and chaos in a predator–prey model with fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 172(C), pages 134-158.
    13. Chen, Xingzhi & Tian, Baodan & Xu, Xin & Zhang, Hailan & Li, Dong, 2023. "A stochastic predator–prey system with modified LG-Holling type II functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 203(C), pages 449-485.
    14. Das, Bijoy Kumar & Sahoo, Debgopal & Samanta, G.P., 2022. "Impact of fear in a delay-induced predator–prey system with intraspecific competition within predator species," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 134-156.
    15. Das, Meghadri & Samanta, G.P., 2020. "A delayed fractional order food chain model with fear effect and prey refuge," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 178(C), pages 218-245.
    16. Mukherjee, Debasis, 2020. "Role of fear in predator–prey system with intraspecific competition," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 177(C), pages 263-275.
    17. Aihua Kang & Yakui Xue & Jianping Fu, 2015. "Dynamic Behaviors of a Leslie-Gower Ecoepidemiological Model," Discrete Dynamics in Nature and Society, Hindawi, vol. 2015, pages 1-7, November.
    18. Yousef, Fatma Bozkurt & Yousef, Ali & Maji, Chandan, 2021. "Effects of fear in a fractional-order predator-prey system with predator density-dependent prey mortality," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    19. Nirapada Santra & Sudeshna Mondal & Guruprasad Samanta, 2022. "Complex Dynamics of a Predator–Prey Interaction with Fear Effect in Deterministic and Fluctuating Environments," Mathematics, MDPI, vol. 10(20), pages 1-38, October.
    20. Shang, Zuchong & Qiao, Yuanhua, 2024. "Complex dynamics of a four-species food web model with nonlinear top predator harvesting and fear effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 223(C), pages 458-484.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.