IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v142y2021ics0960077920308134.html
   My bibliography  Save this article

Impact of predator incited fear and prey refuge in a fractional order prey predator model

Author

Listed:
  • Barman, Dipesh
  • Roy, Jyotirmoy
  • Alrabaiah, Hussam
  • Panja, Prabir
  • Mondal, Sankar Prasad
  • Alam, Shariful

Abstract

In this article, a predator-prey model has been evolved in the form of a system of fractional order differential equations incorporating two important factors, namely, fear factor and prey refuge factor. Here, the fractional calculus has been taken into consideration to investigate the dynamical behaviour of the solutions of the proposed model system as the changes in life cycle of prey species are of memory bound. Biological validation and well-posedness such as positivity and boundedness of solutions of the model system have been proved analytically. Stability analysis of all the feasible equilibrium points of the model system has been performed in a systematic way. Some important dynamical features of the model system (such as transition of stability of the system) have been demonstrated through rigorous numerical simulation. It is observed that our proposed model system experiences Hopf-bifurcation around the interior equilibrium point with respect to both the parameters f and m1, which are linked with amount of predator induced fear and rate of prey refuge, respectively. The system dynamics is more likely to be stable in the framework of fractional order derivative in comparison to integer-order derivative. The high amount of predator induced fear f and prey refuge rate m1 are independently capable to make the system dynamics to be stable in integer order model system. On the other hand, the dynamics of the model system shifts towards the stability from its unstable behaviour when we continuously reduce the order of the model system; especially under the scenario of low level of predator induced fear and prey refuge rate. Thus, our comprehensive mathematical findings reveal the fact that fading memory can play a contributory role towards stable coexistence of the predator-prey system whereas strong memory of the species deteriorates the stable coexistence of the model system.

Suggested Citation

  • Barman, Dipesh & Roy, Jyotirmoy & Alrabaiah, Hussam & Panja, Prabir & Mondal, Sankar Prasad & Alam, Shariful, 2021. "Impact of predator incited fear and prey refuge in a fractional order prey predator model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
  • Handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308134
    DOI: 10.1016/j.chaos.2020.110420
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920308134
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.110420?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Huisen & Cai, Yongli & Fu, Shengmao & Wang, Weiming, 2019. "Impact of the fear effect in a prey-predator model incorporating a prey refuge," Applied Mathematics and Computation, Elsevier, vol. 356(C), pages 328-337.
    2. Scott Creel & Paul Schuette & David Christianson, 2014. "Effects of predation risk on group size, vigilance, and foraging behavior in an African ungulate community," Behavioral Ecology, International Society for Behavioral Ecology, vol. 25(4), pages 773-784.
    3. Sajjadi, Samaneh Sadat & Baleanu, Dumitru & Jajarmi, Amin & Pirouz, Hassan Mohammadi, 2020. "A new adaptive synchronization and hyperchaos control of a biological snap oscillator," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    4. Alidousti, Javad & Ghafari, Elham, 2020. "Dynamic behavior of a fractional order prey-predator model with group defense," Chaos, Solitons & Fractals, Elsevier, vol. 134(C).
    5. Ghanbari, Behzad & Djilali, Salih, 2020. "Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    6. Altan, Aytaç & Karasu, Seçkin & Bekiros, Stelios, 2019. "Digital currency forecasting with chaotic meta-heuristic bio-inspired signal processing techniques," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 325-336.
    7. Altan, Aytaç & Karasu, Seçkin, 2020. "Recognition of COVID-19 disease from X-ray images by hybrid model consisting of 2D curvelet transform, chaotic salp swarm algorithm and deep learning technique," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    8. Abdon Atangana & Aydin Secer, 2013. "A Note on Fractional Order Derivatives and Table of Fractional Derivatives of Some Special Functions," Abstract and Applied Analysis, Hindawi, vol. 2013, pages 1-8, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sajan, & Dubey, Balram & Sasmal, Sourav Kumar, 2022. "Chaotic dynamics of a plankton-fish system with fear and its carry over effects in the presence of a discrete delay," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    2. Balcı, Ercan, 2023. "Predation fear and its carry-over effect in a fractional order prey–predator model with prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    3. Barman, Dipesh & Roy, Jyotirmoy & Alam, Shariful, 2022. "Impact of wind in the dynamics of prey–predator interactions," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 191(C), pages 49-81.
    4. Bi, Zhimin & Liu, Shutang & Ouyang, Miao, 2022. "Three-dimensional pattern dynamics of a fractional predator-prey model with cross-diffusion and herd behavior," Applied Mathematics and Computation, Elsevier, vol. 421(C).
    5. Cuimin Liu & Yonggang Chen & Yingbin Yu & Zhen Wang, 2023. "Bifurcation and Stability Analysis of a New Fractional-Order Prey–Predator Model with Fear Effects in Toxic Injections," Mathematics, MDPI, vol. 11(20), pages 1-13, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Belmahi, Naziha & Shawagfeh, Nabil, 2021. "A new mathematical model for the glycolysis phenomenon involving Caputo fractional derivative: Well posedness, stability and bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    2. Rajpal, Sheetal & Lakhyani, Navin & Singh, Ayush Kumar & Kohli, Rishav & Kumar, Naveen, 2021. "Using handpicked features in conjunction with ResNet-50 for improved detection of COVID-19 from chest X-ray images," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    3. Jiang, Kai & Liu, Zhifeng & Tian, Yang & Zhang, Tao & Yang, Congbin, 2022. "An estimation method of fractal parameters on rough surfaces based on the exact spectral moment using artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    4. Mohammadi, Hakimeh & Kumar, Sunil & Rezapour, Shahram & Etemad, Sina, 2021. "A theoretical study of the Caputo–Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    5. Yoshioka, Hidekazu & Yoshioka, Yumi, 2024. "Generalized divergences for statistical evaluation of uncertainty in long-memory processes," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    6. Ding, Shoukui & Wang, Ning & Bao, Han & Chen, Bei & Wu, Huagan & Xu, Quan, 2023. "Memristor synapse-coupled piecewise-linear simplified Hopfield neural network: Dynamics analysis and circuit implementation," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    7. Shabani, Masoume & Wallin, Fredrik & Dahlquist, Erik & Yan, Jinyue, 2022. "Techno-economic assessment of battery storage integrated into a grid-connected and solar-powered residential building under different battery ageing models," Applied Energy, Elsevier, vol. 318(C).
    8. Zhang, Boyi & Shang, Pengjian & Zhou, Qin, 2021. "The identification of fractional order systems by multiscale multivariate analysis," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    9. Chen, Xi & Yu, Ruyi & Ullah, Sajid & Wu, Dianming & Li, Zhiqiang & Li, Qingli & Qi, Honggang & Liu, Jihui & Liu, Min & Zhang, Yundong, 2022. "A novel loss function of deep learning in wind speed forecasting," Energy, Elsevier, vol. 238(PB).
    10. Kashkynbayev, Ardak & Cao, Jinde & Suragan, Durvudkhan, 2021. "Global Lagrange stability analysis of retarded SICNNs," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    11. Bilgili, Faik & Koçak, Emrah & Kuşkaya, Sevda & Bulut, Ümit, 2020. "Estimation of the co-movements between biofuel production and food prices: A wavelet-based analysis," Energy, Elsevier, vol. 213(C).
    12. Yao, Qijia & Alsaade, Fawaz W. & Al-zahrani, Mohammed S. & Jahanshahi, Hadi, 2023. "Fixed-time neural control for output-constrained synchronization of second-order chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    13. Ali, Hegagi Mohamed & Ameen, Ismail Gad, 2021. "Optimal control strategies of a fractional order model for Zika virus infection involving various transmissions," Chaos, Solitons & Fractals, Elsevier, vol. 146(C).
    14. Singh, Harendra & Baleanu, Dumitru & Singh, Jagdev & Dutta, Hemen, 2021. "Computational study of fractional order smoking model," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    15. Zeeshan Memon Anjum & Dalila Mat Said & Mohammad Yusri Hassan & Zohaib Hussain Leghari & Gul Sahar, 2022. "Parallel operated hybrid Arithmetic-Salp swarm optimizer for optimal allocation of multiple distributed generation units in distribution networks," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-38, April.
    16. Chen, Xiaolu & Weng, Tongfeng & Yang, Huijie, 2023. "Synchronization of spatiotemporal chaos and reservoir computing via scalar signals," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    17. Yao, Qijia, 2021. "Synchronization of second-order chaotic systems with uncertainties and disturbances using fixed-time adaptive sliding mode control," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    18. Wang, Jian & Kim, Junseok & Shao, Wei & Nam, SeungHyon & Hong, Soon-Cheol, 2021. "Effect of oxytocin injection on fetal heart rate based on multifractal analysis," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    19. Wang, Qiubao & Han, Zikun & Zhang, Xing & Yang, Yuejuan, 2021. "Dynamics of the delay-coupled bubble system combined with the stochastic term," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    20. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:142:y:2021:i:c:s0960077920308134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.