IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v174y2023ics0960077923007919.html
   My bibliography  Save this article

Spatial pattern formation driven by the cross-diffusion in a predator–prey model with Holling type functional response

Author

Listed:
  • Wang, Fatao
  • Yang, Ruizhi

Abstract

In this paper, we consider a cross-diffusion predator–prey system with Holling type functional response. We study the local stability, Turing instability, spatial pattern formation, Hopf and Turing–Hopf bifurcation of the equilibrium. Numerical simulation with zero-flux boundary conditions discloses that the system under consideration experiences the occurrence of cross-diffusion-driven instability. The dynamical system in Turing space emerges spots, stripe-spot mixtures and labyrinthine patterns, which reveals that the interaction of both self- and cross-diffusions play a significant role on the pattern formation of the present system in a way to enrich the pattern. We obtain the normal form of the Turing–Hopf bifurcation and observe that the system has stably spatially homogeneous periodic solutions, stable constant and nonconstant steady-state solutions, which indicates that the intrinsic growth rate coefficient and the environmental carrying capacity coefficient are two important factors for predator–prey system, and affect the stability of predator–prey system.

Suggested Citation

  • Wang, Fatao & Yang, Ruizhi, 2023. "Spatial pattern formation driven by the cross-diffusion in a predator–prey model with Holling type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
  • Handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007919
    DOI: 10.1016/j.chaos.2023.113890
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077923007919
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113890?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gambino, G. & Lombardo, M.C. & Sammartino, M., 2012. "Turing instability and traveling fronts for a nonlinear reaction–diffusion system with cross-diffusion," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 82(6), pages 1112-1132.
    2. Yan, Shuixian & Jia, Dongxue & Zhang, Tonghua & Yuan, Sanling, 2020. "Pattern dynamics in a diffusive predator-prey model with hunting cooperations," Chaos, Solitons & Fractals, Elsevier, vol. 130(C).
    3. Djilali, Salih, 2019. "Impact of prey herd shape on the predator-prey interaction," Chaos, Solitons & Fractals, Elsevier, vol. 120(C), pages 139-148.
    4. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
    5. Wang, Yong & Zhou, Xu & Jiang, Weihua, 2023. "Bifurcations in a diffusive predator–prey system with linear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bilazeroğlu, Ş. & Göktepe, S. & Merdan, H., 2023. "Effects of the random walk and the maturation period in a diffusive predator–prey system with two discrete delays," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    2. Pal, Pallav Jyoti & Mandal, Gourav & Guin, Lakshmi Narayan & Saha, Tapan, 2024. "Allee effect and hunting-induced bifurcation inquisition and pattern formation in a modified Leslie–Gower interacting species system," Chaos, Solitons & Fractals, Elsevier, vol. 182(C).
    3. Currò, C. & Grifò, G. & Valenti, G., 2023. "Turing patterns in hyperbolic reaction-transport vegetation models with cross-diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    4. He, Haoming & Xiao, Min & He, Jiajin & Zheng, Weixing, 2024. "Regulating spatiotemporal dynamics for a delay Gierer–Meinhardt model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    5. Wang, Fatao & Yang, Ruizhi & Zhang, Xin, 2024. "Turing patterns in a predator–prey model with double Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 170-191.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Fatao & Yang, Ruizhi & Zhang, Xin, 2024. "Turing patterns in a predator–prey model with double Allee effect," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 220(C), pages 170-191.
    2. Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
    3. Mondal, Argha & Hens, Chittaranjan & Mondal, Arnab & Antonopoulos, Chris G., 2021. "Spatiotemporal instabilities and pattern formation in systems of diffusively coupled Izhikevich neurons," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    4. Djilali, Salih & Ghanbari, Behzad, 2020. "Coronavirus pandemic: A predictive analysis of the peak outbreak epidemic in South Africa, Turkey, and Brazil," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Gupta, Ashvini & Dubey, Balram, 2022. "Bifurcation and chaos in a delayed eco-epidemic model induced by prey configuration," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    6. Chen, Mengxin & Wu, Ranchao, 2023. "Steady states and spatiotemporal evolution of a diffusive predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    7. Yanfei Du & Ben Niu & Junjie Wei, 2021. "Dynamics in a Predator–Prey Model with Cooperative Hunting and Allee Effect," Mathematics, MDPI, vol. 9(24), pages 1-40, December.
    8. Ghanbari, Behzad & Djilali, Salih, 2020. "Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    9. Tian, Yuan & Li, Huanmeng & Sun, Kaibiao, 2024. "Complex dynamics of a fishery model: Impact of the triple effects of fear, cooperative hunting and intermittent harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 218(C), pages 31-48.
    10. Meng Zhu & Jing Li & Xinze Lian, 2022. "Pattern Dynamics of Cross Diffusion Predator–Prey System with Strong Allee Effect and Hunting Cooperation," Mathematics, MDPI, vol. 10(17), pages 1-20, September.
    11. Banda, Heather & Chapwanya, Michael & Dumani, Phindile, 2022. "Pattern formation in the Holling–Tanner predator–prey model with predator-taxis. A nonstandard finite difference approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 196(C), pages 336-353.
    12. Djilali, Salih & Cattani, Carlo, 2021. "Patterns of a superdiffusive consumer-resource model with hunting cooperation functional response," Chaos, Solitons & Fractals, Elsevier, vol. 151(C).
    13. Zhu, Linhe & Tang, Yuxuan & Shen, Shuling, 2023. "Pattern study and parameter identification of a reaction-diffusion rumor propagation system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 166(C).
    14. Shi, Yu & Luo, Xiao-Feng & Zhang, Yong-Xin & Sun, Gui-Quan, 2023. "An indicator of Crohn’s disease severity based on Turing patterns," Chaos, Solitons & Fractals, Elsevier, vol. 171(C).
    15. Li, Qiang & Liu, Zhijun & Yuan, Sanling, 2019. "Cross-diffusion induced Turing instability for a competition model with saturation effect," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 64-77.
    16. Souna, Fethi & Lakmeche, Abdelkader & Djilali, Salih, 2020. "Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Cristina Gutiérrez & Carmen Minuesa, 2020. "A Predator–Prey Two-Sex Branching Process," Mathematics, MDPI, vol. 8(9), pages 1-26, August.
    18. Mohan, Nishith & Kumari, Nitu, 2021. "Positive steady states of a SI epidemic model with cross diffusion," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    19. Djilali, Salih & Ghanbari, Behzad & Bentout, Soufiane & Mezouaghi, Abdelheq, 2020. "Turing-Hopf bifurcation in a diffusive mussel-algae model with time-fractional-order derivative," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    20. Ghorai, Santu & Poria, Swarup, 2016. "Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 421-429.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:174:y:2023:i:c:s0960077923007919. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.