IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v186y2024ics0960077924007999.html
   My bibliography  Save this article

Spatio-temporal dynamics in a delayed prey–predator model with nonlinear prey refuge and harvesting

Author

Listed:
  • Sarif, Nawaj
  • Kumar, Arjun
  • Anshu,
  • Sarwardi, Sahabuddin
  • Dubey, Balram

Abstract

In the current study, we introduce a model for the temporal and spatial interactions between prey and predator. The model incorporates a nonlinear refuge mechanism for prey, along with linear harvesting of prey and nonlinear harvesting for predators. Initially, we examined the well-posed nature of the model by analyzing the presence of all feasible equilibria and investigating the corresponding dynamics. Following that, we delve into the dynamics of the temporal model, focusing specifically on aspects such as uniform boundedness, permanence, and stability of viable equilibria. We demonstrate analytically that the proposed model experiences transcritical, saddle–node, Hopf, and Bogdanov–Takens bifurcations. It shows a variety of intricate dynamics involving Generalized Hopf and double Hopf. Then, discrete-time delay effects arising from the gestation of predator species have been incorporated into the temporal system. Hopf bifurcation for the delay parameter was detected in this investigation. Subsequently, we established conditions for self-diffusion instability and Turing instability in the spatiotemporal model, both with and without delay, employing the homogeneous Neumann boundary condition. Moreover, the discussion of sensitivity analysis (PRCC) serves to illustrate how crucial parameters influence the dynamics of the system. In addition, we conduct numerical simulations aiming to corroborate and validate the analytical results obtained.

Suggested Citation

  • Sarif, Nawaj & Kumar, Arjun & Anshu, & Sarwardi, Sahabuddin & Dubey, Balram, 2024. "Spatio-temporal dynamics in a delayed prey–predator model with nonlinear prey refuge and harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 186(C).
  • Handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007999
    DOI: 10.1016/j.chaos.2024.115247
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077924007999
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2024.115247?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jana, Debaldev & Agrawal, Rashmi & Upadhyay, Ranjit Kumar, 2014. "Top-predator interference and gestation delay as determinants of the dynamics of a realistic model food chain," Chaos, Solitons & Fractals, Elsevier, vol. 69(C), pages 50-63.
    2. Shang, Zuchong & Qiao, Yuanhua, 2023. "Multiple bifurcations in a predator–prey system of modified Holling and Leslie type with double Allee effect and nonlinear harvesting," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 205(C), pages 745-764.
    3. Chen, Yuanyuan & Yu, Jiang & Sun, Chengjun, 2007. "Stability and Hopf bifurcation analysis in a three-level food chain system with delay," Chaos, Solitons & Fractals, Elsevier, vol. 31(3), pages 683-694.
    4. Mortuja, Md Golam & Chaube, Mithilesh Kumar & Kumar, Santosh, 2021. "Dynamic analysis of a predator-prey system with nonlinear prey harvesting and square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Guin, Lakshmi Narayan & Djilali, Salih & Chakravarty, Santabrata, 2021. "Cross-diffusion-driven instability in an interacting species model with prey refuge," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jana, Debaldev & Pathak, Rachana & Agarwal, Manju, 2016. "On the stability and Hopf bifurcation of a prey-generalist predator system with independent age-selective harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 83(C), pages 252-273.
    2. Swarnali Sharma & G. P. Samanta, 2013. "Mathematical Analysis of a Single-Species Population Model in a Polluted Environment with Discrete Time Delays," Journal of Mathematics, Hindawi, vol. 2013, pages 1-18, June.
    3. Chen, Yuanyuan & Changming, Song, 2008. "Stability and Hopf bifurcation analysis in a prey–predator system with stage-structure for prey and time delay," Chaos, Solitons & Fractals, Elsevier, vol. 38(4), pages 1104-1114.
    4. Zhu, Linhe & Zheng, Wenxin & Shen, Shuling, 2023. "Dynamical analysis of a SI epidemic-like propagation model with non-smooth control," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
    5. Pal, D. & Mahapatra, G.S., 2016. "Effect of toxic substance on delayed competitive allelopathic phytoplankton system with varying parameters through stability and bifurcation analysis," Chaos, Solitons & Fractals, Elsevier, vol. 87(C), pages 109-124.
    6. Xu, Rui & Ma, Zhien, 2008. "Stability and Hopf bifurcation in a ratio-dependent predator–prey system with stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 38(3), pages 669-684.
    7. Umrao, Anuj Kumar & Roy, Subarna & Tiwari, Pankaj Kumar & Srivastava, Prashant K., 2024. "Dynamical behaviors of autonomous and nonautonomous models of generalist predator–prey system with fear, mutual interference and nonlinear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 183(C).
    8. Gan, Qintao & Xu, Rui & Yang, Pinghua, 2009. "Bifurcation and chaos in a ratio-dependent predator–prey system with time delay," Chaos, Solitons & Fractals, Elsevier, vol. 39(4), pages 1883-1895.
    9. Sun, Chengjun & Loreau, Michel, 2009. "Dynamics of a three-species food chain model with adaptive traits," Chaos, Solitons & Fractals, Elsevier, vol. 41(5), pages 2812-2819.
    10. Li, Zhenlei & Zhang, Yue, 2024. "Dynamic analysis of a fast slow modified Leslie–Gower predator–prey model with constant harvest and stochastic factor," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 226(C), pages 474-499.
    11. Enobong E. Joshua & Ekemini T. Akpan, 2018. "Global Stability and Hopf-bifurcation Analysis of Biological Systems using Delayed Extended Rosenzweig-MacArthur Model," Modern Applied Science, Canadian Center of Science and Education, vol. 12(2), pages 171-171, February.
    12. Arjun Hasibuan & Asep Kuswandi Supriatna & Endang Rusyaman & Md. Haider Ali Biswas, 2023. "Predator–Prey Model Considering Implicit Marine Reserved Area and Linear Function of Critical Biomass Level," Mathematics, MDPI, vol. 11(18), pages 1-16, September.
    13. Lahmiri, Salim, 2017. "A study on chaos in crude oil markets before and after 2008 international financial crisis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 389-395.
    14. Sen, Ayan & Mukherjee, Debasis, 2009. "Chaos in the delay logistic equation with discontinuous delays," Chaos, Solitons & Fractals, Elsevier, vol. 40(5), pages 2126-2132.
    15. Lahmiri, Salim, 2017. "On fractality and chaos in Moroccan family business stock returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 473(C), pages 29-39.
    16. Cai, Liming & Li, Xuezhi & Yu, Jingyuan & Zhu, Guangtian, 2009. "Dynamics of a nonautonomous predator–prey dispersion–delay system with Beddington–DeAngelis functional response," Chaos, Solitons & Fractals, Elsevier, vol. 40(4), pages 2064-2075.
    17. Kundu, Soumen & Maitra, Sarit, 2018. "Dynamics of a delayed predator-prey system with stage structure and cooperation for preys," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 453-460.
    18. Huangyu Guo & Jing Han & Guodong Zhang, 2023. "Hopf Bifurcation and Control for the Bioeconomic Predator–Prey Model with Square Root Functional Response and Nonlinear Prey Harvesting," Mathematics, MDPI, vol. 11(24), pages 1-18, December.
    19. Mingjing Du & Junmei Li & Yulan Wang & Wei Zhang, 2019. "Numerical Simulation of a Class of Three-Dimensional Kolmogorov Model with Chaotic Dynamic Behavior by Using Barycentric Interpolation Collocation Method," Complexity, Hindawi, vol. 2019, pages 1-14, April.
    20. Lahmiri, Salim, 2017. "Investigating existence of chaos in short and long term dynamics of Moroccan exchange rates," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 655-661.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:186:y:2024:i:c:s0960077924007999. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.