IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v169y2023ics096007792300187x.html
   My bibliography  Save this article

Bifurcations in a diffusive predator–prey system with linear harvesting

Author

Listed:
  • Wang, Yong
  • Zhou, Xu
  • Jiang, Weihua

Abstract

Complex spatiotemporal dynamical behaviors of a diffusive predator–prey system with Michaelis–Menten type functional response and linear harvesting are investigated. Firstly, the critical conditions for the occurrence of Turing instability, which are necessary and sufficient, are derived in a novel way. Then, the existence conditions of codimension-1 Turing bifurcation, Hopf bifurcation, and codimension-2 Turing–Turing bifurcation, Turing–Hopf bifurcation are established. Furthermore, the detailed bifurcation set is given by calculating the amplitude equation with the method of the multiple time scale near the Turing–Hopf bifurcation. We find that the system may exhibit nonconstant steady-state solutions, spatially homogeneous periodic solutions, and spatially inhomogeneous periodic solutions, which can be verified by a series of numerical simulations. These investigations not only explain the effect of diffusion and harvesting on the dynamic behavior of the system, but also reveal the mechanism of spatiotemporal complexity in the diffusive predator–prey system.

Suggested Citation

  • Wang, Yong & Zhou, Xu & Jiang, Weihua, 2023. "Bifurcations in a diffusive predator–prey system with linear harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s096007792300187x
    DOI: 10.1016/j.chaos.2023.113286
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096007792300187X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2023.113286?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hunki Baek, 2014. "Spatiotemporal Dynamics of a Predator-Prey System with Linear Harvesting Rate," Mathematical Problems in Engineering, Hindawi, vol. 2014, pages 1-9, April.
    2. Souna, Fethi & Lakmeche, Abdelkader & Djilali, Salih, 2020. "Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    3. Hunki Baek & Dongseok Kim, 2014. "Dynamics of a Predator-Prey System with Mixed Functional Responses," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-10, September.
    4. Zhang, Lei & Wang, Wenjuan & Xue, Yakui, 2009. "Spatiotemporal complexity of a predator–prey system with constant harvest rate," Chaos, Solitons & Fractals, Elsevier, vol. 41(1), pages 38-46.
    5. Ghorai, Santu & Poria, Swarup, 2016. "Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 57-67.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Ziwei & Meng, Xinyou, 2023. "Stability and Hopf bifurcation of a multiple delayed predator–prey system with fear effect, prey refuge and Crowley–Martin function," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Ming Liu & Linyi Ma & Dongpo Hu, 2024. "Some Bifurcations of Codimensions 1 and 2 in a Discrete Predator–Prey Model with Non-Linear Harvesting," Mathematics, MDPI, vol. 12(18), pages 1-44, September.
    3. Wang, Fatao & Yang, Ruizhi, 2023. "Spatial pattern formation driven by the cross-diffusion in a predator–prey model with Holling type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    4. Chen, Mengxin & Ham, Seokjun & Choi, Yongho & Kim, Hyundong & Kim, Junseok, 2023. "Pattern dynamics of a harvested predator–prey model," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marick, Sounov & Bhattacharya, Santanu & Bairagi, Nandadulal, 2023. "Dynamic properties of a reaction–diffusion predator–prey model with nonlinear harvesting: A linear and weakly nonlinear analysis," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Kumar, Sachin & Kharbanda, Harsha, 2019. "Chaotic behavior of predator-prey model with group defense and non-linear harvesting in prey," Chaos, Solitons & Fractals, Elsevier, vol. 119(C), pages 19-28.
    3. Yang, Ruizhi, 2017. "Bifurcation analysis of a diffusive predator–prey system with Crowley–Martin functional response and delay," Chaos, Solitons & Fractals, Elsevier, vol. 95(C), pages 131-139.
    4. Bentout, Soufiane & Djilali, Salih & Kumar, Sunil, 2021. "Mathematical analysis of the influence of prey escaping from prey herd on three species fractional predator-prey interaction model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    5. Souna, Fethi & Belabbas, Mustapha & Menacer, Youssaf, 2023. "Complex pattern formations induced by the presence of cross-diffusion in a generalized predator–prey model incorporating the Holling type functional response and generalization of habitat complexity e," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 204(C), pages 597-618.
    6. Mortuja, Md Golam & Chaube, Mithilesh Kumar & Kumar, Santosh, 2021. "Dynamic analysis of a predator-prey system with nonlinear prey harvesting and square root functional response," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    7. Zhang, Xue & Zhang, Qing-Ling & Liu, Chao & Xiang, Zhong-Yi, 2009. "Bifurcations of a singular prey–predator economic model with time delay and stage structure," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1485-1494.
    8. Bhunia, Bidhan & Ghorai, Santu & Kar, Tapan Kumar & Biswas, Samir & Bhutia, Lakpa Thendup & Debnath, Papiya, 2023. "A study of a spatiotemporal delayed predator–prey model with prey harvesting: Constant and periodic diffusion," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    9. Souna, Fethi & Lakmeche, Abdelkader & Djilali, Salih, 2020. "Spatiotemporal patterns in a diffusive predator-prey model with protection zone and predator harvesting," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    10. Ghorai, Santu & Poria, Swarup, 2016. "Turing patterns induced by cross-diffusion in a predator-prey system in presence of habitat complexity," Chaos, Solitons & Fractals, Elsevier, vol. 91(C), pages 421-429.
    11. Zou, Xiaoling & Li, Qingwei & Cao, Wenhao & Lv, Jingliang, 2023. "Thresholds and critical states for a stochastic predator–prey model with mixed functional responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 206(C), pages 780-795.
    12. Liu, Xia & Zhang, Tonghua & Meng, Xinzhu & Zhang, Tongqian, 2018. "Turing–Hopf bifurcations in a predator–prey model with herd behavior, quadratic mortality and prey-taxis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 496(C), pages 446-460.
    13. Ghorai, Santu & Poria, Swarup, 2016. "Pattern formation and control of spatiotemporal chaos in a reaction diffusion prey–predator system supplying additional food," Chaos, Solitons & Fractals, Elsevier, vol. 85(C), pages 57-67.
    14. Azarboni, H. Ramezannejad & Ansari, R. & Nazarinezhad, A., 2018. "Chaotic dynamics and stability of functionally graded material doubly curved shallow shells," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 14-25.
    15. Ming Liu & Linyi Ma & Dongpo Hu, 2024. "Some Bifurcations of Codimensions 1 and 2 in a Discrete Predator–Prey Model with Non-Linear Harvesting," Mathematics, MDPI, vol. 12(18), pages 1-44, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:169:y:2023:i:c:s096007792300187x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.