IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v413y2022ics0096300321006822.html
   My bibliography  Save this article

A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments

Author

Listed:
  • Zhang, Shengqiang
  • Yuan, Sanling
  • Zhang, Tonghua

Abstract

In this paper, we formulate a stage-structured predator-prey model with Holling-I and Crowley-Martin functional responses in deterministic and stochastic environments, where Holling-I and Crowley-Martin functional responses conform respectively to predator feeds on juvenile and adult prey. In the deterministic case, by discussing the existence and stability of equilibria as well as equilibrium point bifurcations, we observe that the model can possess more than one positive equilibrium and exhibit rich dynamics such as bistability and complex bifurcations, meaning that its dynamics is easily affected by the environmental perturbations. In the stochastic case, by constructing appropriate Lyapunov functions we establish respectively the sufficient conditions for the ergodic stationary distribution and extinction of the model. Moreover, for the bistability scenario between a positive equilibrium and an interior limit cycle in the absence of noise, we can numerically observe the phenomenon of noise-induced state frequent switching between two stochastic attractors in the bistable zone. Biologically, our results can partially explain the phenomenon that in real world, for the inevitably small environmental noise intensities, the biological populations may remain at least two patterns of survival to switch.

Suggested Citation

  • Zhang, Shengqiang & Yuan, Sanling & Zhang, Tonghua, 2022. "A predator-prey model with different response functions to juvenile and adult prey in deterministic and stochastic environments," Applied Mathematics and Computation, Elsevier, vol. 413(C).
  • Handle: RePEc:eee:apmaco:v:413:y:2022:i:c:s0096300321006822
    DOI: 10.1016/j.amc.2021.126598
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300321006822
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2021.126598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Upadhyay, Ranjit Kumar & Naji, Raid Kamel, 2009. "Dynamics of a three species food chain model with Crowley–Martin type functional response," Chaos, Solitons & Fractals, Elsevier, vol. 42(3), pages 1337-1346.
    2. Meng, Xin-You & Huo, Hai-Feng & Xiang, Hong & Yin, Qi-yu, 2014. "Stability in a predator–prey model with Crowley–Martin function and stage structure for prey," Applied Mathematics and Computation, Elsevier, vol. 232(C), pages 810-819.
    3. Xu, Junyan & Zhang, Tonghua & Song, Keying, 2020. "A stochastic model of bacterial infection associated with neutrophils," Applied Mathematics and Computation, Elsevier, vol. 373(C).
    4. Mao, Xuerong & Marion, Glenn & Renshaw, Eric, 2002. "Environmental Brownian noise suppresses explosions in population dynamics," Stochastic Processes and their Applications, Elsevier, vol. 97(1), pages 95-110, January.
    5. Wang, Zhaojuan & Deng, Meiling & Liu, Meng, 2021. "Stationary distribution of a stochastic ratio-dependent predator-prey system with regime-switching," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    6. Maiti, Atasi Patra & Dubey, B. & Chakraborty, A., 2019. "Global analysis of a delayed stage structure prey–predator model with Crowley–Martin type functional response," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 162(C), pages 58-84.
    7. Yu, Xingwang & Yuan, Sanling & Zhang, Tonghua, 2019. "Survival and ergodicity of a stochastic phytoplankton–zooplankton model with toxin-producing phytoplankton in an impulsive polluted environment," Applied Mathematics and Computation, Elsevier, vol. 347(C), pages 249-264.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liang, Ziwei & Meng, Xinyou, 2023. "Stability and Hopf bifurcation of a multiple delayed predator–prey system with fear effect, prey refuge and Crowley–Martin function," Chaos, Solitons & Fractals, Elsevier, vol. 175(P1).
    2. Liu, Qun & Jiang, Daqing, 2023. "Analysis of a stochastic inshore–offshore hairtail fishery model with Ornstein–Uhlenbeck process," Chaos, Solitons & Fractals, Elsevier, vol. 172(C).
    3. Yuke Zhang & Xinzhu Meng, 2022. "Dynamics Analysis of a Predator–Prey Model with Hunting Cooperative and Nonlinear Stochastic Disturbance," Mathematics, MDPI, vol. 10(16), pages 1-18, August.
    4. Wu, Shuying & Yuan, Sanling & Lan, Guijie & Zhang, Tonghua, 2024. "Understanding the dynamics of hepatitis B transmission: A stochastic model with vaccination and Ornstein-Uhlenbeck process," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    5. Su, Tan & Yang, Qing & Zhang, Xinhong & Jiang, Daqing, 2023. "Stationary distribution, extinction and probability density function of a stochastic SEIV epidemic model with general incidence and Ornstein–Uhlenbeck process," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    6. Qi, Haokun & Liu, Bing & Li, Shi, 2024. "Stability, bifurcation, and chaos of a stage-structured predator-prey model under fear-induced and delay," Applied Mathematics and Computation, Elsevier, vol. 476(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Shengnan & Yuan, Sanling & Zhang, Tonghua, 2022. "The impact of environmental fluctuations on a plankton model with toxin-producing phytoplankton and patchy agglomeration," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    2. Lu, Chun & Liu, Honghui & Zhang, De, 2021. "Dynamics and simulations of a second order stochastically perturbed SEIQV epidemic model with saturated incidence rate," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    3. Chen, Jianxin & Zhang, Tonghua & Zhou, Yong-wu, 2021. "Stochastic sensitivity and dynamical complexity of newsvendor models subject to trade credit," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 471-486.
    4. Lu, Minmin & Wang, Yan & Jiang, Daqing, 2021. "Stationary distribution and probability density function analysis of a stochastic HIV model with cell-to-cell infection," Applied Mathematics and Computation, Elsevier, vol. 410(C).
    5. Tong, Jinying & Zhang, Zhenzhong & Bao, Jianhai, 2013. "The stationary distribution of the facultative population model with a degenerate noise," Statistics & Probability Letters, Elsevier, vol. 83(2), pages 655-664.
    6. Huang, Zaitang & Cao, Junfei, 2018. "Ergodicity and bifurcations for stochastic logistic equation with non-Gaussian Lévy noise," Applied Mathematics and Computation, Elsevier, vol. 330(C), pages 1-10.
    7. Jaouad Danane & Delfim F. M. Torres, 2023. "Three-Species Predator–Prey Stochastic Delayed Model Driven by Lévy Jumps and with Cooperation among Prey Species," Mathematics, MDPI, vol. 11(7), pages 1-22, March.
    8. Shi, Zhenfeng & Zhang, Xinhong & Jiang, Daqing, 2019. "Dynamics of an avian influenza model with half-saturated incidence," Applied Mathematics and Computation, Elsevier, vol. 355(C), pages 399-416.
    9. Liu, Meng & Wang, Ke, 2009. "Survival analysis of stochastic single-species population models in polluted environments," Ecological Modelling, Elsevier, vol. 220(9), pages 1347-1357.
    10. Qi, Haokun & Liu, Bing & Li, Shi, 2024. "Stability, bifurcation, and chaos of a stage-structured predator-prey model under fear-induced and delay," Applied Mathematics and Computation, Elsevier, vol. 476(C).
    11. Qi, Kai & Jiang, Daqing & Hayat, Tasawar & Alsaedi, Ahmed, 2021. "Virus dynamic behavior of a stochastic HIV/AIDS infection model including two kinds of target cell infections and CTL immune responses," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 548-570.
    12. Zhao, Xin & Liu, Lidan & Liu, Meng & Fan, Meng, 2024. "Stochastic dynamics of coral reef system with stage-structure for crown-of-thorns starfish," Chaos, Solitons & Fractals, Elsevier, vol. 181(C).
    13. Hu, Guixin & Li, Yanfang, 2015. "Asymptotic behaviors of stochastic periodic differential equation with Markovian switching," Applied Mathematics and Computation, Elsevier, vol. 264(C), pages 403-416.
    14. Liu, Qun & Jiang, Daqing & Shi, Ningzhong & Hayat, Tasawar & Ahmad, Bashir, 2017. "Stationary distribution and extinction of a stochastic SEIR epidemic model with standard incidence," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 476(C), pages 58-69.
    15. Roy, Jyotirmoy & Alam, Shariful, 2020. "Fear factor in a prey–predator system in deterministic and stochastic environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    16. Liu, Qun & Jiang, Daqing, 2020. "Threshold behavior in a stochastic SIR epidemic model with Logistic birth," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    17. Xie, Falan & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2017. "Periodic solution of a stochastic HBV infection model with logistic hepatocyte growth," Applied Mathematics and Computation, Elsevier, vol. 293(C), pages 630-641.
    18. Qi, Haokun & Zhang, Shengqiang & Meng, Xinzhu & Dong, Huanhe, 2018. "Periodic solution and ergodic stationary distribution of two stochastic SIQS epidemic systems," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 508(C), pages 223-241.
    19. Liu, Yuting & Shan, Meijing & Lian, Xinze & Wang, Weiming, 2016. "Stochastic extinction and persistence of a parasite–host epidemiological model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 586-602.
    20. Gao, Yin & Gao, Jinwu & Yang, Xiangfeng, 2022. "The almost sure stability for uncertain delay differential equations based on normal lipschitz conditions," Applied Mathematics and Computation, Elsevier, vol. 420(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:413:y:2022:i:c:s0096300321006822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.