IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v96y2012icp431-443.html
   My bibliography  Save this article

Energy efficiency of multiport power converters used in plug-in/V2G fuel cell vehicles

Author

Listed:
  • Bizon, Nicu

Abstract

In this paper is presented an analysis of energy efficiency for the Multiport Power Converters (MPCs) used in Plug-in Fuel Cell Vehicles (PFCVs). A generic MPC architecture for PFCVs is proposed, which is analyzed for different operating modes of MPC in relation with PFCV operating regimes and the plug-in feature. The basic MPC architecture is described in relation with the PFCV operating regimes. Two MPC architectures are derived from the basic MPC architecture: (1) the MPC1 architecture, which is the MPC architecture without reverse power flow during regenerative braking process, and (2) the MPC2 architecture – MPC architecture without charging mode of Energy Storage System (ESS) from the FC system. Taking in account the imposed window for the ESS state-of-charge, the MPC can be connected to Plug-in Charging Stations (PCS) to exchange power with the Electric Power (EP) system, which will include renewable Distributed Generation (DG) systems. The Energy Management Unit (EMU) of MPC can communicate with the EP system to determine the moments that match the energy demand of plug-in vehicle with the supply availability of the EP system, stabilizing the EP system. The MPC features regarding its energy efficiency were shown by analytical computing performed and appropriate simulations presented in relation with the ESS that can be charged (discharged) from (to) the home/DG/EP system.

Suggested Citation

  • Bizon, Nicu, 2012. "Energy efficiency of multiport power converters used in plug-in/V2G fuel cell vehicles," Applied Energy, Elsevier, vol. 96(C), pages 431-443.
  • Handle: RePEc:eee:appene:v:96:y:2012:i:c:p:431-443
    DOI: 10.1016/j.apenergy.2012.02.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912001766
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.02.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Doucette, Reed T. & McCulloch, Malcolm D., 2011. "Modeling the prospects of plug-in hybrid electric vehicles to reduce CO2 emissions," Applied Energy, Elsevier, vol. 88(7), pages 2315-2323, July.
    2. Bizon, N., 2011. "Nonlinear control of fuel cell hybrid power sources: Part I - Voltage control," Applied Energy, Elsevier, vol. 88(7), pages 2559-2573, July.
    3. Kuperman, Alon & Aharon, Ilan, 2011. "Battery-ultracapacitor hybrids for pulsed current loads: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 981-992, February.
    4. Bizon, N., 2011. "Nonlinear control of fuel cell hybrid power sources: Part II - Current control," Applied Energy, Elsevier, vol. 88(7), pages 2574-2591, July.
    5. Erdinc, O. & Uzunoglu, M., 2010. "Recent trends in PEM fuel cell-powered hybrid systems: Investigation of application areas, design architectures and energy management approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2874-2884, December.
    6. Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
    7. Tang, Yong & Yuan, Wei & Pan, Minqiang & Li, Zongtao & Chen, Guoqing & Li, Yong, 2010. "Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes," Applied Energy, Elsevier, vol. 87(4), pages 1410-1417, April.
    8. Tang, Yong & Yuan, Wei & Pan, Minqiang & Wan, Zhenping, 2011. "Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application," Applied Energy, Elsevier, vol. 88(1), pages 68-76, January.
    9. Barelli, L. & Bidini, G. & Gallorini, F. & Ottaviano, A., 2012. "Dynamic analysis of PEMFC-based CHP systems for domestic application," Applied Energy, Elsevier, vol. 91(1), pages 13-28.
    10. Chakraborty, Sudipta & Kramer, Bill & Kroposki, Benjamin, 2009. "A review of power electronics interfaces for distributed energy systems towards achieving low-cost modular design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2323-2335, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zuo, Jian & Lv, Hong & Zhou, Daming & Xue, Qiong & Jin, Liming & Zhou, Wei & Yang, Daijun & Zhang, Cunman, 2021. "Deep learning based prognostic framework towards proton exchange membrane fuel cell for automotive application," Applied Energy, Elsevier, vol. 281(C).
    2. Bizon, Nicu, 2013. "Energy efficiency for the multiport power converters architectures of series and parallel hybrid power source type used in plug-in/V2G fuel cell vehicles," Applied Energy, Elsevier, vol. 102(C), pages 726-734.
    3. Hannan, M.A. & Lipu, M.S. Hossain & Ker, Pin Jern & Begum, R.A. & Agelidis, Vasilios G. & Blaabjerg, F., 2019. "Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    4. Maria-Simona Răboacă & Irina Băncescu & Vasile Preda & Nicu Bizon, 2020. "An Optimization Model for the Temporary Locations of Mobile Charging Stations," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    5. Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
    6. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    7. Lee, Sang C. & Kwon, Osung & Thomas, Sobi & Park, Sam & Choi, Gyeung-Ho, 2014. "Graphical and mathematical analysis of fuel cell/battery passive hybridization with K factors," Applied Energy, Elsevier, vol. 114(C), pages 135-145.
    8. Taghizadeh, Seyedfoad & Hossain, M.J. & Lu, Junwei & Water, Wayne, 2018. "A unified multi-functional on-board EV charger for power-quality control in household networks," Applied Energy, Elsevier, vol. 215(C), pages 186-201.
    9. Boynuegri, A.R. & Uzunoglu, M. & Erdinc, O. & Gokalp, E., 2014. "A new perspective in grid connection of electric vehicles: Different operating modes for elimination of energy quality problems," Applied Energy, Elsevier, vol. 132(C), pages 435-451.
    10. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    11. Nicu Bizon & Alin Gheorghita Mazare & Laurentiu Mihai Ionescu & Phatiphat Thounthong & Erol Kurt & Mihai Oproescu & Gheorghe Serban & Ioan Lita, 2019. "Better Fuel Economy by Optimizing Airflow of the Fuel Cell Hybrid Power Systems Using Fuel Flow-Based Load-Following Control," Energies, MDPI, vol. 12(14), pages 1-17, July.
    12. Trovão, João P. & Pereirinha, Paulo G. & Jorge, Humberto M. & Antunes, Carlos Henggeler, 2013. "A multi-level energy management system for multi-source electric vehicles – An integrated rule-based meta-heuristic approach," Applied Energy, Elsevier, vol. 105(C), pages 304-318.
    13. Nicu Bizon & Valentin Alexandru Stan & Angel Ciprian Cormos, 2019. "Optimization of the Fuel Cell Renewable Hybrid Power System Using the Control Mode of the Required Load Power on the DC Bus," Energies, MDPI, vol. 12(10), pages 1-15, May.
    14. Xu, Liangfei & Ouyang, Minggao & Li, Jianqiu & Yang, Fuyuan & Lu, Languang & Hua, Jianfeng, 2013. "Optimal sizing of plug-in fuel cell electric vehicles using models of vehicle performance and system cost," Applied Energy, Elsevier, vol. 103(C), pages 477-487.
    15. Bizon, Nicu, 2013. "Energy harvesting from the FC stack that operates using the MPP tracking based on modified extremum seeking control," Applied Energy, Elsevier, vol. 104(C), pages 326-336.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
    2. Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
    3. Bizon, N., 2011. "Nonlinear control of fuel cell hybrid power sources: Part I - Voltage control," Applied Energy, Elsevier, vol. 88(7), pages 2559-2573, July.
    4. Matraji, Imad & Laghrouche, Salah & Jemei, Samir & Wack, Maxime, 2013. "Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode," Applied Energy, Elsevier, vol. 104(C), pages 945-957.
    5. Liu, Ze & Zhang, Baitao & Xu, Sichuan, 2022. "Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application," Applied Energy, Elsevier, vol. 309(C).
    6. Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
    7. Andrzej Wilk & Daniel Węcel, 2020. "Measurements Based Analysis of the Proton Exchange Membrane Fuel Cell Operation in Transient State and Power of Own Needs," Energies, MDPI, vol. 13(2), pages 1-19, January.
    8. Rabbani, Abid & Rokni, Masoud, 2013. "Effect of nitrogen crossover on purging strategy in PEM fuel cell systems," Applied Energy, Elsevier, vol. 111(C), pages 1061-1070.
    9. Meidanshahi, Vida & Karimi, Gholamreza, 2012. "Dynamic modeling, optimization and control of power density in a PEM fuel cell," Applied Energy, Elsevier, vol. 93(C), pages 98-105.
    10. Barelli, Linda & Bidini, Gianni & Ottaviano, Andrea, 2012. "Optimization of a PEMFC/battery pack power system for a bus application," Applied Energy, Elsevier, vol. 97(C), pages 777-784.
    11. Darowicki, K. & Gawel, L. & Mielniczek, M. & Zielinski, A. & Janicka, E. & Hunger, J. & Jorissen, L., 2020. "The impedance of hydrogen oxidation reaction in a proton exchange membrane fuel cell in the presence of carbon monoxide in hydrogen stream," Applied Energy, Elsevier, vol. 279(C).
    12. Hosseinzadeh, Elham & Rokni, Masoud & Rabbani, Abid & Mortensen, Henrik Hilleke, 2013. "Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system," Applied Energy, Elsevier, vol. 104(C), pages 434-444.
    13. Kang, Sanggyu & Zhao, Li & Brouwer, Jacob, 2019. "Dynamic modeling and verification of a proton exchange membrane fuel cell-battery hybrid system to power servers in data centers," Renewable Energy, Elsevier, vol. 143(C), pages 313-327.
    14. Wei, Max & Smith, Sarah J. & Sohn, Michael D., 2017. "Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US," Applied Energy, Elsevier, vol. 191(C), pages 346-357.
    15. Han, Hun Sik & Cho, Changhwan & Kim, Seo Young & Hyun, Jae Min, 2013. "Performance evaluation of a polymer electrolyte membrane fuel cell system for powering portable freezer," Applied Energy, Elsevier, vol. 105(C), pages 125-137.
    16. Yan, Peijian & Tian, Pengfei & Cai, Cheng & Zhou, Shenghu & Yu, Xinhai & Zhao, Shuangliang & Tu, Shan-Tung & Deng, Chengwei & Sun, Yi, 2020. "Antioxidative and stable PdZn/ZnO/Al2O3 catalyst coatings concerning methanol steam reforming for fuel cell-powered vehicles," Applied Energy, Elsevier, vol. 268(C).
    17. Bizon, Nicu, 2019. "Efficient fuel economy strategies for the Fuel Cell Hybrid Power Systems under variable renewable/load power profile," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    18. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    19. Yuan, Wei & Tang, Yong & Yang, Xiaojun & Wan, Zhenping, 2012. "Porous metal materials for polymer electrolyte membrane fuel cells – A review," Applied Energy, Elsevier, vol. 94(C), pages 309-329.
    20. Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:96:y:2012:i:c:p:431-443. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.