Research on air mass flow-pressure combined control and dynamic performance of fuel cell system for vehicles application
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2021.118446
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Xuechao & Chen, Jinzhou & Quan, Shengwei & Wang, Ya-Xiong & He, Hongwen, 2020. "Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells," Applied Energy, Elsevier, vol. 276(C).
- Wee, Jung-Ho, 2010. "Contribution of fuel cell systems to CO2 emission reduction in their application fields," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 735-744, February.
- Matraji, Imad & Laghrouche, Salah & Jemei, Samir & Wack, Maxime, 2013. "Robust control of the PEM fuel cell air-feed system via sub-optimal second order sliding mode," Applied Energy, Elsevier, vol. 104(C), pages 945-957.
- Zhang, Tong & Wang, Peiqi & Chen, Huicui & Pei, Pucheng, 2018. "A review of automotive proton exchange membrane fuel cell degradation under start-stop operating condition," Applied Energy, Elsevier, vol. 223(C), pages 249-262.
- Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
- Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
- Kim, Bosung & Cha, Dowon & Kim, Yongchan, 2015. "The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions," Applied Energy, Elsevier, vol. 138(C), pages 143-149.
- da Fonseca, R. & Bideaux, E. & Gerard, M. & Jeanneret, B. & Desbois-Renaudin, M. & Sari, A., 2014. "Control of PEMFC system air group using differential flatness approach: Validation by a dynamic fuel cell system model," Applied Energy, Elsevier, vol. 113(C), pages 219-229.
- Deng, Zhihua & Chen, Qihong & Zhang, Liyan & Zhou, Keliang & Zong, Yi & Fu, Zhichao & Liu, Hao, 2021. "Data-driven reconstruction of interpretable model for air supply system of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 299(C).
- Tang, Yong & Yuan, Wei & Pan, Minqiang & Li, Zongtao & Chen, Guoqing & Li, Yong, 2010. "Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes," Applied Energy, Elsevier, vol. 87(4), pages 1410-1417, April.
- Zhang, Qinguo & Tong, Zheming & Tong, Shuiguang & Cheng, Zhewu, 2021. "Modeling and dynamic performance research on proton exchange membrane fuel cell system with hydrogen cycle and dead-ended anode," Energy, Elsevier, vol. 218(C).
- Han, Jaeyoung & Yu, Sangseok & Yi, Sun, 2017. "Adaptive control for robust air flow management in an automotive fuel cell system," Applied Energy, Elsevier, vol. 190(C), pages 73-83.
- Chen, Huicui & Song, Zhen & Zhao, Xin & Zhang, Tong & Pei, Pucheng & Liang, Chen, 2018. "A review of durability test protocols of the proton exchange membrane fuel cells for vehicle," Applied Energy, Elsevier, vol. 224(C), pages 289-299.
- Sun, Li & Shen, Jiong & Hua, Qingsong & Lee, Kwang Y., 2018. "Data-driven oxygen excess ratio control for proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 231(C), pages 866-875.
- Jang, Jer-Huan & Yan, Wei-Mon & Chiu, Han-Chieh & Lui, Jun-Yi, 2015. "Dynamic cell performance of kW-grade proton exchange membrane fuel cell stack with dead-ended anode," Applied Energy, Elsevier, vol. 142(C), pages 108-114.
- Tang, Yong & Yuan, Wei & Pan, Minqiang & Wan, Zhenping, 2011. "Experimental investigation on the dynamic performance of a hybrid PEM fuel cell/battery system for lightweight electric vehicle application," Applied Energy, Elsevier, vol. 88(1), pages 68-76, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Jinzhou & He, Hongwen & Wang, Ya-Xiong & Quan, Shengwei & Zhang, Zhendong & Wei, Zhongbao & Han, Ruoyan, 2024. "Research on energy management strategy for fuel cell hybrid electric vehicles based on improved dynamic programming and air supply optimization," Energy, Elsevier, vol. 300(C).
- Sanghyun Yun & Jinwon Yun & Jaeyoung Han, 2023. "Development of a 470-Horsepower Fuel Cell–Battery Hybrid Xcient Dynamic Model Using Simscape TM," Energies, MDPI, vol. 16(24), pages 1-22, December.
- Peng Yin & Jinzhou Chen & Hongwen He, 2023. "Control of Oxygen Excess Ratio for a PEMFC Air Supply System by Intelligent PID Methods," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
- Zeng, Tao & Xiao, Long & Chen, Jinrui & Li, Yu & Yang, Yi & Huang, Shulong & Deng, Chenghao & Zhang, Caizhi, 2023. "Feedforward-based decoupling control of air supply for vehicular fuel cell system: Methodology and experimental validation," Applied Energy, Elsevier, vol. 335(C).
- Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hou, Junbo & Yang, Min & Ke, Changchun & Zhang, Junliang, 2020. "Control logics and strategies for air supply in PEM fuel cell engines," Applied Energy, Elsevier, vol. 269(C).
- Li, Yuehua & Pei, Pucheng & Ma, Ze & Ren, Peng & Huang, Hao, 2020. "Analysis of air compression, progress of compressor and control for optimal energy efficiency in proton exchange membrane fuel cell," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
- Hu, Haowen & Ou, Kai & Yuan, Wei-Wei, 2023. "Fused multi-model predictive control with adaptive compensation for proton exchange membrane fuel cell air supply system," Energy, Elsevier, vol. 284(C).
- Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
- Pei, Pucheng & Chen, Huicui, 2014. "Main factors affecting the lifetime of Proton Exchange Membrane fuel cells in vehicle applications: A review," Applied Energy, Elsevier, vol. 125(C), pages 60-75.
- Wang, Xuechao & Chen, Jinzhou & Quan, Shengwei & Wang, Ya-Xiong & He, Hongwen, 2020. "Hierarchical model predictive control via deep learning vehicle speed predictions for oxygen stoichiometry regulation of fuel cells," Applied Energy, Elsevier, vol. 276(C).
- Kang, Sanggyu & Zhao, Li & Brouwer, Jacob, 2019. "Dynamic modeling and verification of a proton exchange membrane fuel cell-battery hybrid system to power servers in data centers," Renewable Energy, Elsevier, vol. 143(C), pages 313-327.
- Bizon, Nicu, 2019. "Real-time optimization strategies of Fuel Cell Hybrid Power Systems based on Load-following control: A new strategy, and a comparative study of topologies and fuel economy obtained," Applied Energy, Elsevier, vol. 241(C), pages 444-460.
- Vasallo, Manuel Jesús & Bravo, José Manuel & Andújar, José Manuel, 2013. "Optimal sizing for UPS systems based on batteries and/or fuel cell," Applied Energy, Elsevier, vol. 105(C), pages 170-181.
- Vu, Hoang Nghia & Truong Le Tri, Dat & Nguyen, Huu Linh & Kim, Younghyeon & Yu, Sangseok, 2023. "Multifunctional bypass valve for water management and surge protection in a proton-exchange membrane fuel cell supply-air system," Energy, Elsevier, vol. 278(C).
- Bizon, Nicu, 2014. "Tracking the maximum efficiency point for the FC system based on extremum seeking scheme to control the air flow," Applied Energy, Elsevier, vol. 129(C), pages 147-157.
- Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
- Guida, D. & Minutillo, M., 2017. "Design methodology for a PEM fuel cell power system in a more electrical aircraft," Applied Energy, Elsevier, vol. 192(C), pages 446-456.
- Nicu Bizon & Mihai Oproescu, 2018. "Experimental Comparison of Three Real-Time Optimization Strategies Applied to Renewable/FC-Based Hybrid Power Systems Based on Load-Following Control," Energies, MDPI, vol. 11(12), pages 1-32, December.
- Meidanshahi, Vida & Karimi, Gholamreza, 2012. "Dynamic modeling, optimization and control of power density in a PEM fuel cell," Applied Energy, Elsevier, vol. 93(C), pages 98-105.
- Barelli, Linda & Bidini, Gianni & Ottaviano, Andrea, 2012. "Optimization of a PEMFC/battery pack power system for a bus application," Applied Energy, Elsevier, vol. 97(C), pages 777-784.
- Darowicki, K. & Gawel, L. & Mielniczek, M. & Zielinski, A. & Janicka, E. & Hunger, J. & Jorissen, L., 2020. "The impedance of hydrogen oxidation reaction in a proton exchange membrane fuel cell in the presence of carbon monoxide in hydrogen stream," Applied Energy, Elsevier, vol. 279(C).
- Nicu Bizon & Phatiphat Thounthong, 2021. "A Simple and Safe Strategy for Improving the Fuel Economy of a Fuel Cell Vehicle," Mathematics, MDPI, vol. 9(6), pages 1-29, March.
- Han, Jaeyoung & Yu, Sangseok & Yi, Sun, 2017. "Adaptive control for robust air flow management in an automotive fuel cell system," Applied Energy, Elsevier, vol. 190(C), pages 73-83.
- Bizon, Nicu, 2012. "Energy efficiency of multiport power converters used in plug-in/V2G fuel cell vehicles," Applied Energy, Elsevier, vol. 96(C), pages 431-443.
More about this item
Keywords
High-power PEMFC system for vehicles; Power requirements; Air mass flow-pressure combined control; Dynamic performance; Consistency;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:309:y:2022:i:c:s0306261921016718. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.