Experience curve development and cost reduction disaggregation for fuel cell markets in Japan and the US
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.01.056
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kopanos, Georgios M. & Georgiadis, Michael C. & Pistikopoulos, Efstratios N., 2013. "Energy production planning of a network of micro combined heat and power generators," Applied Energy, Elsevier, vol. 102(C), pages 1522-1534.
- Hayward, Jennifer A. & Graham, Paul W., 2013. "A global and local endogenous experience curve model for projecting future uptake and cost of electricity generation technologies," Energy Economics, Elsevier, vol. 40(C), pages 537-548.
- Wand, Robert & Leuthold, Florian, 2011. "Feed-in tariffs for photovoltaics: Learning by doing in Germany?," Applied Energy, Elsevier, vol. 88(12), pages 4387-4399.
- Kannan, R., 2009. "Uncertainties in key low carbon power generation technologies - Implication for UK decarbonisation targets," Applied Energy, Elsevier, vol. 86(10), pages 1873-1886, October.
- Trappey, Amy J.C. & Trappey, Charles V. & Liu, Penny H.Y. & Lin, Lee-Cheng & Ou, Jerry J.R., 2013. "A hierarchical cost learning model for developing wind energy infrastructures," International Journal of Production Economics, Elsevier, vol. 146(2), pages 386-391.
- Neij, Lena, 2008. "Cost development of future technologies for power generation--A study based on experience curves and complementary bottom-up assessments," Energy Policy, Elsevier, vol. 36(6), pages 2200-2211, June.
- Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
- Kalkuhl, Matthias & Edenhofer, Ottmar & Lessmann, Kai, 2012.
"Learning or lock-in: Optimal technology policies to support mitigation,"
Resource and Energy Economics, Elsevier, vol. 34(1), pages 1-23.
- Matthias Kalkuhl & Ottmar Edenhofer & Kai Lessmann, 2011. "Learning or Lock-in: Optimal Technology Policies to Support Mitigation," CESifo Working Paper Series 3422, CESifo.
- Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
- Béla Nagy & J Doyne Farmer & Quan M Bui & Jessika E Trancik, 2013.
"Statistical Basis for Predicting Technological Progress,"
PLOS ONE, Public Library of Science, vol. 8(2), pages 1-7, February.
- Bela Nagy & J. Doyne Farmer & Quan M. Bui & Jessika E. Trancik, 2012. "Statistical Basis for Predicting Technological Progress," Papers 1207.1463, arXiv.org.
- Aguilera, Roberto F., 2014. "Production costs of global conventional and unconventional petroleum," Energy Policy, Elsevier, vol. 64(C), pages 134-140.
- Criqui, P. & Mima, S. & Menanteau, P. & Kitous, A., 2015.
"Mitigation strategies and energy technology learning: An assessment with the POLES model,"
Technological Forecasting and Social Change, Elsevier, vol. 90(PA), pages 119-136.
- Patrick Criqui & Silvana Mima & Philippe Menanteau & Alban Kitous, 2015. "Mitigation strategies and energy technology learning: an assessment with the POLES model," Post-Print halshs-00999280, HAL.
- Wang, Yong-Peng & Liu, Xian-Wei & Li, Wen-Wei & Li, Feng & Wang, Yun-Kun & Sheng, Guo-Ping & Zeng, Raymond J. & Yu, Han-Qing, 2012. "A microbial fuel cell–membrane bioreactor integrated system for cost-effective wastewater treatment," Applied Energy, Elsevier, vol. 98(C), pages 230-235.
- Jiao, Kui & Park, Jaewan & Li, Xianguo, 2010. "Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell," Applied Energy, Elsevier, vol. 87(9), pages 2770-2777, September.
- Schoots, K. & Kramer, G.J. & van der Zwaan, B.C.C., 2010. "Technology learning for fuel cells: An assessment of past and potential cost reductions," Energy Policy, Elsevier, vol. 38(6), pages 2887-2897, June.
- Wang, Yun & Chen, Ken S. & Mishler, Jeffrey & Cho, Sung Chan & Adroher, Xavier Cordobes, 2011. "A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research," Applied Energy, Elsevier, vol. 88(4), pages 981-1007, April.
- Nuytten, Thomas & Claessens, Bert & Paredis, Kristof & Van Bael, Johan & Six, Daan, 2013. "Flexibility of a combined heat and power system with thermal energy storage for district heating," Applied Energy, Elsevier, vol. 104(C), pages 583-591.
- Li, Sheng & Zhang, Xiaosong & Gao, Lin & Jin, Hongguang, 2012. "Learning rates and future cost curves for fossil fuel energy systems with CO2 capture: Methodology and case studies," Applied Energy, Elsevier, vol. 93(C), pages 348-356.
- de Wit, Marc & Junginger, Martin & Faaij, André, 2013. "Learning in dedicated wood production systems: Past trends, future outlook and implications for bioenergy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 417-432.
- Park, Jae Wan & Jiao, Kui & Li, Xianguo, 2010. "Numerical investigations on liquid water removal from the porous gas diffusion layer by reactant flow," Applied Energy, Elsevier, vol. 87(7), pages 2180-2186, July.
- Lohwasser, Richard & Madlener, Reinhard, 2013.
"Relating R&D and investment policies to CCS market diffusion through two-factor learning,"
Energy Policy, Elsevier, vol. 52(C), pages 439-452.
- Lohwasser, Richard & Madlener, Reinhard, 2010. "Relating R&D and Investment Policies to CCS Market Diffusion Through Two-Factor Learning," FCN Working Papers 6/2010, E.ON Energy Research Center, Future Energy Consumer Needs and Behavior (FCN).
- Bazilian, Morgan & Onyeji, Ijeoma & Liebreich, Michael & MacGill, Ian & Chase, Jennifer & Shah, Jigar & Gielen, Dolf & Arent, Doug & Landfear, Doug & Zhengrong, Shi, 2013. "Re-considering the economics of photovoltaic power," Renewable Energy, Elsevier, vol. 53(C), pages 329-338.
- Zheng, Cheng & Kammen, Daniel M., 2014. "An innovation-focused roadmap for a sustainable global photovoltaic industry," Energy Policy, Elsevier, vol. 67(C), pages 159-169.
- Talavera, D.L. & Pérez-Higueras, P. & Ruíz-Arias, J.A. & Fernández, E.F., 2015. "Levelised cost of electricity in high concentrated photovoltaic grid connected systems: Spatial analysis of Spain," Applied Energy, Elsevier, vol. 151(C), pages 49-59.
- Qiu, Yueming & Anadon, Laura D., 2012. "The price of wind power in China during its expansion: Technology adoption, learning-by-doing, economies of scale, and manufacturing localization," Energy Economics, Elsevier, vol. 34(3), pages 772-785.
- de La Tour, Arnaud & Glachant, Matthieu & Ménière, Yann, 2013.
"Predicting the costs of photovoltaic solar modules in 2020 using experience curve models,"
Energy, Elsevier, vol. 62(C), pages 341-348.
- Arnaud de La Tour & Matthieu Glachant & Yann Ménière, 2013. "Predicting the costs of photovoltaic solar modules in 2020 using experience curve models," Post-Print hal-01522961, HAL.
- Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
- Barbieri, Enrico Saverio & Spina, Pier Ruggero & Venturini, Mauro, 2012. "Analysis of innovative micro-CHP systems to meet household energy demands," Applied Energy, Elsevier, vol. 97(C), pages 723-733.
- Weiss, Martin & Patel, Martin K. & Junginger, Martin & Perujo, Adolfo & Bonnel, Pierre & van Grootveld, Geert, 2012. "On the electrification of road transport - Learning rates and price forecasts for hybrid-electric and battery-electric vehicles," Energy Policy, Elsevier, vol. 48(C), pages 374-393.
- MacGillivray, Andrew & Jeffrey, Henry & Winskel, Mark & Bryden, Ian, 2014. "Innovation and cost reduction for marine renewable energy: A learning investment sensitivity analysis," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 108-124.
- Desroches, Louis-Benoit & Garbesi, Karina & Kantner, Colleen & Van Buskirk, Robert & Yang, Hung-Chia, 2013. "Incorporating experience curves in appliance standards analysis," Energy Policy, Elsevier, vol. 52(C), pages 402-416.
- Peter Thompson, 2012. "The Relationship between Unit Cost and Cumulative Quantity and the Evidence for Organizational Learning-by-Doing," Journal of Economic Perspectives, American Economic Association, vol. 26(3), pages 203-224, Summer.
- Winskel, Mark & Markusson, Nils & Jeffrey, Henry & Candelise, Chiara & Dutton, Geoff & Howarth, Paul & Jablonski, Sophie & Kalyvas, Christos & Ward, David, 2014. "Learning pathways for energy supply technologies: Bridging between innovation studies and learning rates," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 96-114.
- Reichelstein, Stefan & Yorston, Michael, 2013. "The prospects for cost competitive solar PV power," Energy Policy, Elsevier, vol. 55(C), pages 117-127.
- Narbel, Patrick André & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 91-97.
- Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
- Hu, Xiaosong & Johannesson, Lars & Murgovski, Nikolce & Egardt, Bo, 2015. "Longevity-conscious dimensioning and power management of the hybrid energy storage system in a fuel cell hybrid electric bus," Applied Energy, Elsevier, vol. 137(C), pages 913-924.
- Koo, Jamin & Park, Kyungtae & Shin, Dongil & Yoon, En Sup, 2011. "Economic evaluation of renewable energy systems under varying scenarios and its implications to Korea's renewable energy plan," Applied Energy, Elsevier, vol. 88(6), pages 2254-2260, June.
- Narbel, Patrick A. & Hansen, Jan Petter, 2014. "Estimating the cost of future global energy supply," Discussion Papers 2014/14, Norwegian School of Economics, Department of Business and Management Science.
- Tang, Yong & Yuan, Wei & Pan, Minqiang & Li, Zongtao & Chen, Guoqing & Li, Yong, 2010. "Experimental investigation of dynamic performance and transient responses of a kW-class PEM fuel cell stack under various load changes," Applied Energy, Elsevier, vol. 87(4), pages 1410-1417, April.
- Candelise, Chiara & Winskel, Mark & Gross, Robert J.K., 2013. "The dynamics of solar PV costs and prices as a challenge for technology forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 96-107.
- Barelli, L. & Bidini, G. & Gallorini, F. & Ottaviano, A., 2012. "Dynamic analysis of PEMFC-based CHP systems for domestic application," Applied Energy, Elsevier, vol. 91(1), pages 13-28.
- van der Zwaan, Bob & Rivera-Tinoco, Rodrigo & Lensink, Sander & van den Oosterkamp, Paul, 2012. "Cost reductions for offshore wind power: Exploring the balance between scaling, learning and R&D," Renewable Energy, Elsevier, vol. 41(C), pages 389-393.
- Siderius, Hans-Paul, 2013. "The role of experience curves for setting MEPS for appliances," Energy Policy, Elsevier, vol. 59(C), pages 762-772.
- Cong, Rong-Gang, 2013. "An optimization model for renewable energy generation and its application in China: A perspective of maximum utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 94-103.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.
- Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
- Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
- Elia, A. & Kamidelivand, M. & Rogan, F. & Ó Gallachóir, B., 2021. "Impacts of innovation on renewable energy technology cost reductions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
- Santhakumar, Srinivasan & Meerman, Hans & Faaij, André, 2021. "Improving the analytical framework for quantifying technological progress in energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
- Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
- Mauleón, Ignacio, 2016. "Photovoltaic learning rate estimation: Issues and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 507-524.
- Thomassen, Gwenny & Van Passel, Steven & Dewulf, Jo, 2020. "A review on learning effects in prospective technology assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 130(C).
- Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
- Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
- Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying endogenous learning models in energy system optimization," Papers 2106.06373, arXiv.org.
- Zhang, Shuwei & Bauer, Nico & Yin, Guangzhi & Xie, Xi, 2020. "Technology learning and diffusion at the global and local scales: A modeling exercise in the REMIND model," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
- Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
- Jabir Ali Ouassou & Julian Straus & Marte Fodstad & Gunhild Reigstad & Ove Wolfgang, 2021. "Applying Endogenous Learning Models in Energy System Optimization," Energies, MDPI, vol. 14(16), pages 1-21, August.
- Mauleón, Ignacio & Hamoudi, Hamid, 2017. "Photovoltaic and wind cost decrease estimation: Implications for investment analysis," Energy, Elsevier, vol. 137(C), pages 1054-1065.
- Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018.
"How well do experience curves predict technological progress? A method for making distributional forecasts,"
Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
- Franc{c}ois Lafond & Aimee Gotway Bailey & Jan David Bakker & Dylan Rebois & Rubina Zadourian & Patrick McSharry & J. Doyne Farmer, 2017. "How well do experience curves predict technological progress? A method for making distributional forecasts," Papers 1703.05979, arXiv.org, revised Sep 2017.
- Wiebe, Kirsten S. & Lutz, Christian, 2016. "Endogenous technological change and the policy mix in renewable power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 739-751.
- Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
- Elia, A. & Taylor, M. & Ó Gallachóir, B. & Rogan, F., 2020. "Wind turbine cost reduction: A detailed bottom-up analysis of innovation drivers," Energy Policy, Elsevier, vol. 147(C).
- Karali, Nihan & Park, Won Young & McNeil, Michael, 2017. "Modeling technological change and its impact on energy savings in the U.S. iron and steel sector," Applied Energy, Elsevier, vol. 202(C), pages 447-458.
More about this item
Keywords
PEM fuel cells; Solid oxide fuel cells; Combined heat and power systems; Technology learning rates; Experience curves; Technology deployment programs;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:191:y:2017:i:c:p:346-357. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.