Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2010.12.035
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Mavris, Vassilis, 2007. "Optimization of biogas production by co-digesting whey with diluted poultry manure," Renewable Energy, Elsevier, vol. 32(13), pages 2147-2160.
- Ogejo, J.A. & Li, L., 2010. "Enhancing biomethane production from flush dairy manure with turkey processing wastewater," Applied Energy, Elsevier, vol. 87(10), pages 3171-3177, October.
- Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Christopoulou, Nicholetta & Goumenaki, Maria, 2007. "Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure," Applied Energy, Elsevier, vol. 84(6), pages 646-663, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ahmad, Ashfaq & Buang, Azizul & Bhat, A.H., 2016. "Renewable and sustainable bioenergy production from microalgal co-cultivation with palm oil mill effluent (POME): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 214-234.
- Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
- Hu, Zhen-Hu & Yue, Zhen-Bo & Yu, Han-Qing & Liu, Shao-Yang & Harada, Hideki & Li, Yu-You, 2012. "Mechanisms of microwave irradiation pretreatment for enhancing anaerobic digestion of cattail by rumen microorganisms," Applied Energy, Elsevier, vol. 93(C), pages 229-236.
- Cheng Yan & Jianfeng Zhu & Xiuli Shen & Jun Fan & Dong Mi & Zhengming Qian, 2020. "Ensemble of Regression-Type and Interpolation-Type Metamodels," Energies, MDPI, vol. 13(3), pages 1-20, February.
- Solé-Bundó, Maria & Passos, Fabiana & Romero-Güiza, Maycoll S. & Ferrer, Ivet & Astals, Sergi, 2019. "Co-digestion strategies to enhance microalgae anaerobic digestion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 471-482.
- Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
- Kafle, Gopi Krishna & Kim, Sang Hun, 2013. "Anaerobic treatment of apple waste with swine manure for biogas production: Batch and continuous operation," Applied Energy, Elsevier, vol. 103(C), pages 61-72.
- Dębowski, Marcin & Zieliński, Marcin & Grala, Anna & Dudek, Magda, 2013. "Algae biomass as an alternative substrate in biogas production technologies—Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 596-604.
- Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
- Passos, Fabiana & Solé, Maria & García, Joan & Ferrer, Ivet, 2013. "Biogas production from microalgae grown in wastewater: Effect of microwave pretreatment," Applied Energy, Elsevier, vol. 108(C), pages 168-175.
- Mariana Ferdeș & Gigel Paraschiv & Mariana Ionescu & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă, 2023. "Anaerobic Co-Digestion: A Way to Potentiate the Synergistic Effect of Multiple Substrates and Microbial Diversity," Energies, MDPI, vol. 16(5), pages 1-24, February.
- Jurado, E. & Antonopoulou, G. & Lyberatos, G. & Gavala, H.N. & Skiadas, I.V., 2016. "Continuous anaerobic digestion of swine manure: ADM1-based modelling and effect of addition of swine manure fibers pretreated with aqueous ammonia soaking," Applied Energy, Elsevier, vol. 172(C), pages 190-198.
- Kavitha, S. & Banu, J. Rajesh & Priya, A. Arul & Uan, Do Khac & Yeom, Ick Tae, 2017. "Liquefaction of food waste and its impacts on anaerobic biodegradability, energy ratio and economic feasibility," Applied Energy, Elsevier, vol. 208(C), pages 228-238.
- Kwietniewska, Ewa & Tys, Jerzy, 2014. "Process characteristics, inhibition factors and methane yields of anaerobic digestion process, with particular focus on microalgal biomass fermentation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 491-500.
- Zhang, Yi & Kang, Xihui & Wang, Zhongming & Kong, Xiaoying & Li, Lianhua & Sun, Yongming & Zhu, Shunni & Feng, Siran & Luo, Xinjian & Lv, Pengmei, 2018. "Enhancement of the energy yield from microalgae via enzymatic pretreatment and anaerobic co-digestion," Energy, Elsevier, vol. 164(C), pages 400-407.
- Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
- Tedesco, S. & Marrero Barroso, T. & Olabi, A.G., 2014. "Optimization of mechanical pre-treatment of Laminariaceae spp. biomass-derived biogas," Renewable Energy, Elsevier, vol. 62(C), pages 527-534.
- Sandra Lage & Zivan Gojkovic & Christiane Funk & Francesco G. Gentili, 2018. "Algal Biomass from Wastewater and Flue Gases as a Source of Bioenergy," Energies, MDPI, vol. 11(3), pages 1-30, March.
- Peng, Xiaowei & Nges, Ivo Achu & Liu, Jing, 2016. "Improving methane production from wheat straw by digestate liquor recirculation in continuous stirred tank processes," Renewable Energy, Elsevier, vol. 85(C), pages 12-18.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Sorgüven, Esra & Özilgen, Mustafa, 2012. "Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process," Energy, Elsevier, vol. 40(1), pages 214-225.
- Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
- Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2012. "Production of methane from anaerobic digestion of jatropha and pongamia oil cakes," Applied Energy, Elsevier, vol. 93(C), pages 148-159.
- Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
- Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.
- Brown, N. & Güttler, J. & Shilton, A., 2016. "Overcoming the challenges of full scale anaerobic co-digestion of casein whey," Renewable Energy, Elsevier, vol. 96(PA), pages 425-432.
- Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.
- Theofanous, Elisavet & Kythreotou, Nicoletta & Panayiotou, Gregoris & Florides, Georgios & Vyrides, Ioannis, 2014. "Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus," Renewable Energy, Elsevier, vol. 71(C), pages 263-270.
- Periyasamy Elaiyaraju & Nagarajan Partha, 2012. "Biogas Production from Sago (Tapioca) Wastewater Using Anaerobic Batch Reactor," Energy & Environment, , vol. 23(4), pages 631-645, June.
- Dae-Yeol Cheong & Jeffrey Todd Harvey & Jinsu Kim & Changsoo Lee, 2019. "Improving Biomethanation of Chicken Manure by Co-Digestion with Ethanol Plant Effluent," IJERPH, MDPI, vol. 16(24), pages 1-10, December.
- George Lazaroiu & Katarina Valaskova & Elvira Nica & Pavol Durana & Pavol Kral & Petr Bartoš & Anna Maroušková, 2020. "Techno-Economic Assessment: Food Emulsion Waste Management," Energies, MDPI, vol. 13(18), pages 1-12, September.
- Pastor, L. & Ruiz, L. & Pascual, A. & Ruiz, B., 2013. "Co-digestion of used oils and urban landfill leachates with sewage sludge and the effect on the biogas production," Applied Energy, Elsevier, vol. 107(C), pages 438-445.
- Martínez-Ruano, Jimmy Anderson & Restrepo-Serna, Daissy Lorena & Carmona-Garcia, Estefanny & Giraldo, Jhonny Alejandro Poveda & Aroca, Germán & Cardona, Carlos Ariel, 2019. "Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: Techno-economic assessment," Applied Energy, Elsevier, vol. 241(C), pages 504-518.
- Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
- Yang Mo Gu & Seon Young Park & Ji Yeon Park & Byoung-In Sang & Byoung Seong Jeon & Hyunook Kim & Jin Hyung Lee, 2021. "Impact of Attrition Ball-Mill on Characteristics and Biochemical Methane Potential of Food Waste," Energies, MDPI, vol. 14(8), pages 1-10, April.
- Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
- Jake A. K. Elliott & Andrew S. Ball, 2021. "Selection of Industrial Trade Waste Resource Recovery Technologies—A Systematic Review," Resources, MDPI, vol. 10(4), pages 1-22, March.
- Allen, Eoin & Wall, David M. & Herrmann, Christiane & Murphy, Jerry D., 2016. "A detailed assessment of resource of biomethane from first, second and third generation substrates," Renewable Energy, Elsevier, vol. 87(P1), pages 656-665.
- Markou, Giorgos & Georgakakis, Dimitris, 2011. "Cultivation of filamentous cyanobacteria (blue-green algae) in agro-industrial wastes and wastewaters: A review," Applied Energy, Elsevier, vol. 88(10), pages 3389-3401.
- Hassan, Muhammad & Zhao, Chao & Ding, Weimin, 2020. "Enhanced methane generation and biodegradation efficiencies of goose manure by thermal-sonication pretreatment and organic loading management in CSTR," Energy, Elsevier, vol. 198(C).
More about this item
Keywords
Codigestion; Algal biomass; Swine manure; Methane yield;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:10:p:3448-3453. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.