IDEAS home Printed from https://ideas.repec.org/a/gam/jresou/v10y2021i4p29-d526322.html
   My bibliography  Save this article

Selection of Industrial Trade Waste Resource Recovery Technologies—A Systematic Review

Author

Listed:
  • Jake A. K. Elliott

    (ARC Training Centre for the Transformation of Australia’s Biosolids Resource, RMIT University, Bundoora 3083, Australia)

  • Andrew S. Ball

    (ARC Training Centre for the Transformation of Australia’s Biosolids Resource, RMIT University, Bundoora 3083, Australia)

Abstract

Industrial wastewater and other trade wastes are often sources of pollution which can cause environmental damage. However, resource recovery approaches have the potential to lead to positive environmental outcomes, profits, and new sources of finite commodities. Information on these waste sources, and the valuable components which may be contained in such waste is increasingly being made available by public, academic and commercial stakeholders (including companies active in meat processing, dairy, brewing, textile and other sectors). Utilising academic and industry literature, this review evaluates several methods of resource recovery (e.g., bioreactors, membrane technologies, and traditional chemical processes) and their advantages and disadvantages in a trade waste setting. This review lays the groundwork for classification of waste and resource recovery technologies, in order to inform process choices, which may lead to wider commercial application of these technologies. Although each waste source and recovery process is unique, membrane bioreactors show promise for a wide range of resource recovery applications. Despite interest, uptake of resource recovery technologies remains low, or not widely championed. For this to change, knowledge needs to increase in several key areas including: availabilities and classification of trade wastes, technology choice processes, and industrial viability.

Suggested Citation

  • Jake A. K. Elliott & Andrew S. Ball, 2021. "Selection of Industrial Trade Waste Resource Recovery Technologies—A Systematic Review," Resources, MDPI, vol. 10(4), pages 1-22, March.
  • Handle: RePEc:gam:jresou:v:10:y:2021:i:4:p:29-:d:526322
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2079-9276/10/4/29/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2079-9276/10/4/29/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Murray R. Hall & Anthony Priestley & Tim H. Muster, 2018. "Environmental Life Cycle Costing and Sustainability: Insights from Pollution Abatement and Resource Recovery in Wastewater Treatment," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1127-1138, October.
    2. Oluleye, Gbemi & Jiang, Ning & Smith, Robin & Jobson, Megan, 2017. "A novel screening framework for waste heat utilization technologies," Energy, Elsevier, vol. 125(C), pages 367-381.
    3. Ogejo, J.A. & Li, L., 2010. "Enhancing biomethane production from flush dairy manure with turkey processing wastewater," Applied Energy, Elsevier, vol. 87(10), pages 3171-3177, October.
    4. Montefrio, Marvin Joseph & Xinwen, Tai & Obbard, Jeffrey Philip, 2010. "Recovery and pre-treatment of fats, oil and grease from grease interceptors for biodiesel production," Applied Energy, Elsevier, vol. 87(10), pages 3155-3161, October.
    5. Ben Morelli & Sarah Cashman & Xin (Cissy) Ma & Jay Garland & Jason Turgeon & Lauren Fillmore & Diana Bless & Michael Nye, 2018. "Effect of Nutrient Removal and Resource Recovery on Life Cycle Cost and Environmental Impacts of a Small Scale Water Resource Recovery Facility," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    6. Tran, Nghiep Nam & Tišma, Marina & Budžaki, Sandra & McMurchie, Edward J. & Gonzalez, Olivia Maria Morales & Hessel, Volker & Ngothai, Yung, 2018. "Scale-up and economic analysis of biodiesel production from recycled grease trap waste," Applied Energy, Elsevier, vol. 229(C), pages 142-150.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosalie van Zelm & Raquel de Paiva Seroa da Motta & Wan Yee Lam & Wilbert Menkveld & Eddie Broeders, 2020. "Life cycle assessment of side stream removal and recovery of nitrogen from wastewater treatment plants," Journal of Industrial Ecology, Yale University, vol. 24(4), pages 913-922, August.
    2. di Bitonto, Luigi & Lopez, Antonio & Mascolo, Giuseppe & Mininni, Giuseppe & Pastore, Carlo, 2016. "Efficient solvent-less separation of lipids from municipal wet sewage scum and their sustainable conversion into biodiesel," Renewable Energy, Elsevier, vol. 90(C), pages 55-61.
    3. Mukhammad Jamaludin & Yao-Chuan Tsai & Hao-Ting Lin & Chi-Yung Huang & Wonjung Choi & Jiang-Gu Chen & Wu-Yang Sean, 2024. "Modeling and Control Strategies for Energy Management in a Wastewater Center: A Review on Aeration," Energies, MDPI, vol. 17(13), pages 1-24, June.
    4. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
    5. Santagata, R. & Ripa, M. & Ulgiati, S., 2017. "An environmental assessment of electricity production from slaughterhouse residues. Linking urban, industrial and waste management systems," Applied Energy, Elsevier, vol. 186(P2), pages 175-188.
    6. Subramaniam, D. & Murugesan, A. & Avinash, A. & Kumaravel, A., 2013. "Bio-diesel production and its engine characteristics—An expatiate view," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 361-370.
    7. Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
    8. González-Fernández, Cristina & Molinuevo-Salces, Beatriz & García-González, Maria Cruz, 2011. "Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology," Applied Energy, Elsevier, vol. 88(10), pages 3448-3453.
    9. Wang, Yi-Tong & Yang, Xing-Xia & Xu, Jie & Wang, Hong-Li & Wang, Zi-Bing & Zhang, Lei & Wang, Shao-Long & Liang, Jing-Long, 2019. "Biodiesel production from esterification of oleic acid by a sulfonated magnetic solid acid catalyst," Renewable Energy, Elsevier, vol. 139(C), pages 688-695.
    10. Atadashi, I.M. & Aroua, M.K. & Aziz, A.R. Abdul & Sulaiman, N.M.N., 2011. "Refining technologies for the purification of crude biodiesel," Applied Energy, Elsevier, vol. 88(12), pages 4239-4251.
    11. Rozina, & Ahmad, Mushtaq & Zafar, Muhammad & Ali, Nasir & Lu, Houfang, 2017. "Biodiesel synthesis from Saussurea heteromalla (D.Don) Hand-Mazz integrating ethanol production using biorefinery approach," Energy, Elsevier, vol. 141(C), pages 1810-1818.
    12. Abdulkhani, Ali & Alizadeh, Peyman & Hedjazi, Sahab & Hamzeh, Yahya, 2017. "Potential of Soya as a raw material for a whole crop biorefinery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1269-1280.
    13. Wu, Kun & Xu, Weijia & Lu, Jian & Wang, Chun & Liao, Jinhui & He, Xia, 2022. "Saponification with calcium enhanced methane yield in anaerobic digestion of fat, oil, and grease: The essential role of calcium," Renewable Energy, Elsevier, vol. 195(C), pages 1103-1112.
    14. Sandouqa, Arwa & Al-Hamamre, Zayed, 2021. "Economical evaluation of jojoba cultivation for biodiesel production in Jordan," Renewable Energy, Elsevier, vol. 177(C), pages 1116-1132.
    15. Wafaurahman Wafa & Amir Hamzah Sharaai & Nitanan Koshy Matthew & Sabrina Abdullah J Ho & Noor Ahmad Akhundzada, 2022. "Organizational Life Cycle Sustainability Assessment (OLCSA) for a Higher Education Institution as an Organization: A Systematic Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(5), pages 1-29, February.
    16. Adriana Reyes-Lúa & Julian Straus & Vidar T. Skjervold & Goran Durakovic & Tom Ståle Nordtvedt, 2021. "A Novel Concept for Sustainable Food Production Utilizing Low Temperature Industrial Surplus Heat," Sustainability, MDPI, vol. 13(17), pages 1-23, August.
    17. Noriega, M.A. & Narváez, P.C., 2020. "Scale-up and cost analysis of biodiesel production using liquid-liquid film reactors: Reduction in the methanol consumption and investment cost," Energy, Elsevier, vol. 211(C).
    18. Abou-Shanab, Reda A.I. & Hwang, Jae-Hoon & Cho, Yunchul & Min, Booki & Jeon, Byong-Hun, 2011. "Characterization of microalgal species isolated from fresh water bodies as a potential source for biodiesel production," Applied Energy, Elsevier, vol. 88(10), pages 3300-3306.
    19. Ruixi Zhao & Lu Sun & Xiaolong Zou & Yi Dou, 2021. "Greenhouse Gas Emissions Analysis Working toward Zero-Waste and Its Indication to Low Carbon City Development," Energies, MDPI, vol. 14(20), pages 1-14, October.
    20. Dokl, Monika & Gomilšek, Rok & Čuček, Lidija & Abikoye, Ben & Kravanja, Zdravko, 2022. "Maximizing the power output and net present value of organic Rankine cycle: Application to aluminium industry," Energy, Elsevier, vol. 239(PE).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jresou:v:10:y:2021:i:4:p:29-:d:526322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.