IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v71y2014icp263-270.html
   My bibliography  Save this article

Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus

Author

Listed:
  • Theofanous, Elisavet
  • Kythreotou, Nicoletta
  • Panayiotou, Gregoris
  • Florides, Georgios
  • Vyrides, Ioannis

Abstract

In this work the current status and the potential of biogas production and energy generation through the anaerobic digestion of piggery waste in Cyprus are presented. The onsite use of anaerobic digestion for treating piggery waste not only generates renewable energy, but it is also a sustainable waste management solution. The actual values of the biogas production (20,475 m3/day) and the energy generation are compared with the theoretical values, which are in line with several units. The value 20 m3/tonne of pig waste was found to predict more accurately the biogas, heat and electricity production compared to the value of 36 m3/tonne of pig waste. Moreover, an empirical equation (R2=0.9939) is proposed for calculating the biogas production per day, according to the volume of pig waste treated per day BGP=14.64 (PWT)+535. The potential biogas production from the total pig population of Cyprus equals to 29,734,356 m3/yr and the potential thermal and electrical energy are calculated to be 90.85GWhth/yr and 63.59GWhel/yr, respectively. Finally future alternatives on anaerobic digestion in Cyprus are presented such as co-digestion, centralized anaerobic digestion, hydrothermal pre-treatment, possible use of fuel cells and efficient utilization of pig slurry.

Suggested Citation

  • Theofanous, Elisavet & Kythreotou, Nicoletta & Panayiotou, Gregoris & Florides, Georgios & Vyrides, Ioannis, 2014. "Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus," Renewable Energy, Elsevier, vol. 71(C), pages 263-270.
  • Handle: RePEc:eee:renene:v:71:y:2014:i:c:p:263-270
    DOI: 10.1016/j.renene.2014.05.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114002547
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.05.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    2. Tsai, Wen-Tien & Lin, Che-I, 2009. "Overview analysis of bioenergy from livestock manure management in Taiwan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2682-2688, December.
    3. Kythreotou, Nicoletta & Tassou, Savvas A. & Florides, Georgios, 2012. "An assessment of the biomass potential of Cyprus for energy production," Energy, Elsevier, vol. 47(1), pages 253-261.
    4. Lönnqvist, Tomas & Silveira, Semida & Sanches-Pereira, Alessandro, 2013. "Swedish resource potential from residues and energy crops to enhance biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 298-314.
    5. Qiao, Wei & Yan, Xiuyi & Ye, Junhui & Sun, Yifei & Wang, Wei & Zhang, Zhongzhi, 2011. "Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment," Renewable Energy, Elsevier, vol. 36(12), pages 3313-3318.
    6. Monteiro, Eliseu & Mantha, Vishveshwar & Rouboa, Abel, 2011. "Prospective application of farm cattle manure for bioenergy production in Portugal," Renewable Energy, Elsevier, vol. 36(2), pages 627-631.
    7. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Mavris, Vassilis, 2007. "Optimization of biogas production by co-digesting whey with diluted poultry manure," Renewable Energy, Elsevier, vol. 32(13), pages 2147-2160.
    8. Jingura, Raphael M. & Matengaifa, Rutendo, 2009. "Optimization of biogas production by anaerobic digestion for sustainable energy development in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1116-1120, June.
    9. Kythreotou, Nicoletta & Tassou, Savvas A. & Florides, Georgios, 2011. "The contribution of direct energy use for livestock breeding to the greenhouse gases emissions of Cyprus," Energy, Elsevier, vol. 36(10), pages 6090-6097.
    10. Goulding, D. & Power, N., 2013. "Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel?," Renewable Energy, Elsevier, vol. 53(C), pages 121-131.
    11. Kaparaju, P. & Rintala, J., 2011. "Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland," Renewable Energy, Elsevier, vol. 36(1), pages 31-41.
    12. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Christopoulou, Nicholetta & Goumenaki, Maria, 2007. "Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure," Applied Energy, Elsevier, vol. 84(6), pages 646-663, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gabriel D. Oreggioni & Baboo Lesh Gowreesunker & Savvas A. Tassou & Giuseppe Bianchi & Matthew Reilly & Marie E. Kirby & Trisha A. Toop & Mike K. Theodorou, 2017. "Potential for Energy Production from Farm Wastes Using Anaerobic Digestion in the UK: An Economic Comparison of Different Size Plants," Energies, MDPI, vol. 10(9), pages 1-16, September.
    2. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    3. Izabella Maj & Sylwester Kalisz & Szymon Ciukaj, 2022. "Properties of Animal-Origin Ash—A Valuable Material for Circular Economy," Energies, MDPI, vol. 15(4), pages 1-15, February.
    4. Martinát, Stanislav & Navrátil, Josef & Dvořák, Petr & Van der Horst, Dan & Klusáček, Petr & Kunc, Josef & Frantál, Bohumil, 2016. "Where AD plants wildly grow: The spatio-temporal diffusion of agricultural biogas production in the Czech Republic," Renewable Energy, Elsevier, vol. 95(C), pages 85-97.
    5. Mario Rafael Giraldi-Díaz & Eduardo Castillo-González & Lorena De Medina-Salas & Raúl Velásquez-De la Cruz & Héctor Daniel Huerta-Silva, 2021. "Environmental Impacts Associated with Intensive Production in Pig Farms in Mexico through Life Cycle Assessment," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    6. Hessam Golmohamadi, 2022. "Demand-Side Flexibility in Power Systems: A Survey of Residential, Industrial, Commercial, and Agricultural Sectors," Sustainability, MDPI, vol. 14(13), pages 1-16, June.
    7. Michail Tsangas & Mejdi Jeguirim & Lionel Limousy & Antonis Zorpas, 2019. "The Application of Analytical Hierarchy Process in Combination with PESTEL-SWOT Analysis to Assess the Hydrocarbons Sector in Cyprus," Energies, MDPI, vol. 12(5), pages 1-17, February.
    8. Sean O’Connor & Ehiaze Ehimen & Suresh C. Pillai & Gary Lyons & John Bartlett, 2020. "Economic and Environmental Analysis of Small-Scale Anaerobic Digestion Plants on Irish Dairy Farms," Energies, MDPI, vol. 13(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Suberu, Mohammed Yekini & Bashir, Nouruddeen & Mustafa, Mohd. Wazir, 2013. "Biogenic waste methane emissions and methane optimization for bioelectricity in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 643-654.
    2. Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.
    3. Mohammed, Y.S. & Mustafa, M.W. & Bashir, N. & Ogundola, M.A. & Umar, U., 2014. "Sustainable potential of bioenergy resources for distributed power generation development in Nigeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 361-370.
    4. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    5. Neiva de Figueiredo, João & Mayerle, Sérgio Fernando, 2014. "A systemic approach for dimensioning and designing anaerobic bio-digestion/energy generation biomass supply networks," Renewable Energy, Elsevier, vol. 71(C), pages 690-694.
    6. Periyasamy Elaiyaraju & Nagarajan Partha, 2012. "Biogas Production from Sago (Tapioca) Wastewater Using Anaerobic Batch Reactor," Energy & Environment, , vol. 23(4), pages 631-645, June.
    7. Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
    8. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    9. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    10. Coultry, James & Walsh, Eilín & McDonnell, Kevin P., 2013. "Energy and economic implications of anaerobic digestion pasteurisation regulations in Ireland," Energy, Elsevier, vol. 60(C), pages 125-128.
    11. Dae-Yeol Cheong & Jeffrey Todd Harvey & Jinsu Kim & Changsoo Lee, 2019. "Improving Biomethanation of Chicken Manure by Co-Digestion with Ethanol Plant Effluent," IJERPH, MDPI, vol. 16(24), pages 1-10, December.
    12. González-Fernández, Cristina & Molinuevo-Salces, Beatriz & García-González, Maria Cruz, 2011. "Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology," Applied Energy, Elsevier, vol. 88(10), pages 3448-3453.
    13. Bhatnagar, N. & Ryan, D. & Murphy, R. & Enright, A.M., 2022. "A comprehensive review of green policy, anaerobic digestion of animal manure and chicken litter feedstock potential – Global and Irish perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2012. "Production of methane from anaerobic digestion of jatropha and pongamia oil cakes," Applied Energy, Elsevier, vol. 93(C), pages 148-159.
    15. Ganzoury, Mohamed A. & Allam, Nageh K., 2015. "Impact of nanotechnology on biogas production: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1392-1404.
    16. George Lazaroiu & Katarina Valaskova & Elvira Nica & Pavol Durana & Pavol Kral & Petr Bartoš & Anna Maroušková, 2020. "Techno-Economic Assessment: Food Emulsion Waste Management," Energies, MDPI, vol. 13(18), pages 1-12, September.
    17. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    18. Fernandes, Daniel J. & Ferreira, Ana F. & Fernandes, Edgar C., 2023. "Biogas and biomethane production potential via anaerobic digestion of manure: A case study of Portugal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    19. Maghanaki, M. Mohammadi & Ghobadian, B. & Najafi, G. & Galogah, R. Janzadeh, 2013. "Potential of biogas production in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 702-714.
    20. Bundhoo, Zumar M.A. & Mauthoor, Sumayya & Mohee, Romeela, 2016. "Potential of biogas production from biomass and waste materials in the Small Island Developing State of Mauritius," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1087-1100.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:71:y:2014:i:c:p:263-270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.