IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i3p654-d316081.html
   My bibliography  Save this article

Ensemble of Regression-Type and Interpolation-Type Metamodels

Author

Listed:
  • Cheng Yan

    (School of Aerospace Engineering, Xiamen University, Xiamen 361005, China)

  • Jianfeng Zhu

    (School of Aerospace Engineering, Xiamen University, Xiamen 361005, China)

  • Xiuli Shen

    (School of Energy and Power Engineering, Beihang University, Beijing 100191, China)

  • Jun Fan

    (Army Aviation Institute, Beijing 100000, China)

  • Dong Mi

    (AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China)

  • Zhengming Qian

    (AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China)

Abstract

Metamodels have become increasingly popular in the field of energy sources because of their significant advantages in reducing the computational cost of time-consuming tasks. Lacking the prior knowledge of actual physical systems, it may be difficult to find an appropriate metamodel in advance for a new task. A favorite way of overcoming this difficulty is to construct an ensemble metamodel by assembling two or more individual metamodels. Motivated by the existing works, a novel metamodeling approach for building the ensemble metamodels is proposed in this paper. By thoroughly exploring the characteristics of regression-type and interpolation-type metamodels, some useful information is extracted from the feedback of the regression-type metamodels to further improve the functional fitting capability of the ensemble metamodels. Four types of ensemble metamodels were constructed by choosing four individual metamodels. Common benchmark problems are chosen to compare the performance of the individual and ensemble metamodels. The results show that the proposed metamodeling approach reduces the risk of selecting the worst individual metamodel and improves the accuracy of the used individual metamodels.

Suggested Citation

  • Cheng Yan & Jianfeng Zhu & Xiuli Shen & Jun Fan & Dong Mi & Zhengming Qian, 2020. "Ensemble of Regression-Type and Interpolation-Type Metamodels," Energies, MDPI, vol. 13(3), pages 1-20, February.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:654-:d:316081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/3/654/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/3/654/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei-Chiang Hong & Guo-Feng Fan, 2019. "Hybrid Empirical Mode Decomposition with Support Vector Regression Model for Short Term Load Forecasting," Energies, MDPI, vol. 12(6), pages 1-16, March.
    2. Bornatico, Raffaele & Hüssy, Jonathan & Witzig, Andreas & Guzzella, Lino, 2013. "Surrogate modeling for the fast optimization of energy systems," Energy, Elsevier, vol. 57(C), pages 653-662.
    3. Jesús Ferrero Bermejo & Juan Francisco Gómez Fernández & Rafael Pino & Adolfo Crespo Márquez & Antonio Jesús Guillén López, 2019. "Review and Comparison of Intelligent Optimization Modelling Techniques for Energy Forecasting and Condition-Based Maintenance in PV Plants," Energies, MDPI, vol. 12(21), pages 1-18, October.
    4. Seungbeom Nam & Jin Hur, 2018. "Probabilistic Forecasting Model of Solar Power Outputs Based on the Naïve Bayes Classifier and Kriging Models," Energies, MDPI, vol. 11(11), pages 1-15, November.
    5. Qi Zhou & Youmin Rong & Xinyu Shao & Ping Jiang & Zhongmei Gao & Longchao Cao, 2018. "Optimization of laser brazing onto galvanized steel based on ensemble of metamodels," Journal of Intelligent Manufacturing, Springer, vol. 29(7), pages 1417-1431, October.
    6. González-Fernández, Cristina & Molinuevo-Salces, Beatriz & García-González, Maria Cruz, 2011. "Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology," Applied Energy, Elsevier, vol. 88(10), pages 3448-3453.
    7. Arridina Susan Silitonga & Teuku Meurah Indra Mahlia & Abd Halim Shamsuddin & Hwai Chyuan Ong & Jassinnee Milano & Fitranto Kusumo & Abdi Hanra Sebayang & Surya Dharma & Husin Ibrahim & Hazlina Husin , 2019. "Optimization of Cerbera manghas Biodiesel Production Using Artificial Neural Networks Integrated with Ant Colony Optimization," Energies, MDPI, vol. 12(20), pages 1-21, October.
    8. Qi Zhou & Longchao Cao & Hui Zhou & Xiang Huang, 2018. "Prediction of angular distortion in the fiber laser keyhole welding process based on a variable-fidelity approximation modeling approach," Journal of Intelligent Manufacturing, Springer, vol. 29(3), pages 719-736, March.
    9. Xinyu An & Baowei Song & Zhaoyong Mao & Congcong Ma, 2018. "Layout Optimization Design of Two Vortex Induced Piezoelectric Energy Converters (VIPECs) Using the Combined Kriging Surrogate Model and Particle Swarm Optimization Method," Energies, MDPI, vol. 11(8), pages 1-22, August.
    10. Cheng-Wen Lee & Bing-Yi Lin, 2017. "Applications of the Chaotic Quantum Genetic Algorithm with Support Vector Regression in Load Forecasting," Energies, MDPI, vol. 10(11), pages 1-18, November.
    11. Dan Wang & Qing’e Hu & Jia Tang & Hongjie Jia & Yun Li & Shuang Gao & Menghua Fan, 2017. "A Kriging Model Based Optimization of Active Distribution Networks Considering Loss Reduction and Voltage Profile Improvement," Energies, MDPI, vol. 10(12), pages 1-19, December.
    12. Jason Runge & Radu Zmeureanu, 2019. "Forecasting Energy Use in Buildings Using Artificial Neural Networks: A Review," Energies, MDPI, vol. 12(17), pages 1-27, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanyuan Zhou & Min Zhou & Qing Xia & Wei-Chiang Hong, 2019. "Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory," Mathematics, MDPI, vol. 7(12), pages 1-23, December.
    2. Fredrik Skaug Fadnes & Reyhaneh Banihabib & Mohsen Assadi, 2023. "Using Artificial Neural Networks to Gather Intelligence on a Fully Operational Heat Pump System in an Existing Building Cluster," Energies, MDPI, vol. 16(9), pages 1-33, May.
    3. Wang, Lixiao & Jing, Z.X. & Zheng, J.H. & Wu, Q.H. & Wei, Feng, 2018. "Decentralized optimization of coordinated electrical and thermal generations in hierarchical integrated energy systems considering competitive individuals," Energy, Elsevier, vol. 158(C), pages 607-622.
    4. Iftikhar Ahmad & Adil Sana & Manabu Kano & Izzat Iqbal Cheema & Brenno C. Menezes & Junaid Shahzad & Zahid Ullah & Muzammil Khan & Asad Habib, 2021. "Machine Learning Applications in Biofuels’ Life Cycle: Soil, Feedstock, Production, Consumption, and Emissions," Energies, MDPI, vol. 14(16), pages 1-27, August.
    5. Gautham Krishnadas & Aristides Kiprakis, 2020. "A Machine Learning Pipeline for Demand Response Capacity Scheduling," Energies, MDPI, vol. 13(7), pages 1-25, April.
    6. Nguyen Thanh Viet & Alla G. Kravets, 2022. "The New Method for Analyzing Technology Trends of Smart Energy Asset Performance Management," Energies, MDPI, vol. 15(18), pages 1-26, September.
    7. Abokersh, Mohamed Hany & Vallès, Manel & Cabeza, Luisa F. & Boer, Dieter, 2020. "A framework for the optimal integration of solar assisted district heating in different urban sized communities: A robust machine learning approach incorporating global sensitivity analysis," Applied Energy, Elsevier, vol. 267(C).
    8. Bin Li & Mingzhen Lu & Yiyi Zhang & Jia Huang, 2019. "A Weekend Load Forecasting Model Based on Semi-Parametric Regression Analysis Considering Weather and Load Interaction," Energies, MDPI, vol. 12(20), pages 1-19, October.
    9. Runge, Jason & Saloux, Etienne, 2023. "A comparison of prediction and forecasting artificial intelligence models to estimate the future energy demand in a district heating system," Energy, Elsevier, vol. 269(C).
    10. Shichao Huang & Jing Zhang & Yu He & Xiaofan Fu & Luqin Fan & Gang Yao & Yongjun Wen, 2022. "Short-Term Load Forecasting Based on the CEEMDAN-Sample Entropy-BPNN-Transformer," Energies, MDPI, vol. 15(10), pages 1-14, May.
    11. Perera, A.T.D. & Wickramasinghe, P.U. & Nik, Vahid M. & Scartezzini, Jean-Louis, 2019. "Machine learning methods to assist energy system optimization," Applied Energy, Elsevier, vol. 243(C), pages 191-205.
    12. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    13. Tiago Silveira Gontijo & Marcelo Azevedo Costa, 2020. "Forecasting Hierarchical Time Series in Power Generation," Energies, MDPI, vol. 13(14), pages 1-17, July.
    14. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    15. Fateme Dinmohammadi & Yuxuan Han & Mahmood Shafiee, 2023. "Predicting Energy Consumption in Residential Buildings Using Advanced Machine Learning Algorithms," Energies, MDPI, vol. 16(9), pages 1-23, April.
    16. Wu, Jianzhao & Zhang, Chaoyong & Giam, Amanda & Chia, Hou Yi & Cao, Huajun & Ge, Wenjun & Yan, Wentao, 2024. "Physics-assisted transfer learning metamodels to predict bead geometry and carbon emission in laser butt welding," Applied Energy, Elsevier, vol. 359(C).
    17. Mei Yin Ong & Saifuddin Nomanbhay & Fitranto Kusumo & Raja Mohamad Hafriz Raja Shahruzzaman & Abd Halim Shamsuddin, 2021. "Modeling and Optimization of Microwave-Based Bio-Jet Fuel from Coconut Oil: Investigation of Response Surface Methodology (RSM) and Artificial Neural Network Methodology (ANN)," Energies, MDPI, vol. 14(2), pages 1-17, January.
    18. Sen Wang & Yonghui Sun & Yan Zhou & Rabea Jamil Mahfoud & Dongchen Hou, 2019. "A New Hybrid Short-Term Interval Forecasting of PV Output Power Based on EEMD-SE-RVM," Energies, MDPI, vol. 13(1), pages 1-17, December.
    19. Junjun Shi & Jingfang Shen & Yaohui Li, 2021. "High-Precision Kriging Modeling Method Based on Hybrid Sampling Criteria," Mathematics, MDPI, vol. 9(5), pages 1-25, March.
    20. Alexey I. Shinkevich & Tatiana V. Malysheva & Yulia V. Vertakova & Vladimir A. Plotnikov, 2021. "Optimization of Energy Consumption in Chemical Production Based on Descriptive Analytics and Neural Network Modeling," Mathematics, MDPI, vol. 9(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:3:p:654-:d:316081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.