IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v36y2014icp412-427.html
   My bibliography  Save this article

A critical review on anaerobic co-digestion achievements between 2010 and 2013

Author

Listed:
  • Mata-Alvarez, J.
  • Dosta, J.
  • Romero-Güiza, M.S.
  • Fonoll, X.
  • Peces, M.
  • Astals, S.

Abstract

Anaerobic digestion is a commercial reality for several kinds of waste. Nonetheless, anaerobic digestion of single substrates presents some drawbacks linked to substrate characteristics. Anaerobic co-digestion, the simultaneous digestion of two or more substrates, is a feasible option to overcome the drawbacks of mono-digestion and to improve plant׳s economic feasibility. At present, since 50% of the publication has been published in the last two years, anaerobic co-digestion can be considered the most relevant topic within anaerobic digestion research. The aim of this paper is to present a review of the achievements and perspectives of anaerobic co-digestion within the period 2010–2013, which represents a continuation of the previous review made by the authors [3]. In the present review, the publications have been classified as for the main substrate, i.e., animal manures, sewage sludge and biowaste. Animal manures stand as the most reported substrate, agro-industrial waste and the organic fraction of the municipal solid waste being the most reported co-substrate. Special emphasis has been made to the effect of the co-digestion over digestate quality, since land application seems to be the best option for digestate recycling. Traditionally, anaerobic co-digestion between sewage sludge and the organic fraction of the municipal solid waste has been the most reported co-digestion mixture. However, between 2010 and 2013 the publications dealing with fats, oils and greases and algae as sludge co-substrate have increased. This is because both co-substrates can be obtained at the same wastewater treatment plant. In contrast, biowaste as a main substrate has not been as studied as manures or sewage sludge. Finally, three interdisciplinary sections have been written for addressing novelty aspects in anaerobic co-digestion, i.e., pre-treatments, microbial dynamics and modeling. However, much effort needs to be done in these later aspects to better understand and predict anaerobic co-digestion.

Suggested Citation

  • Mata-Alvarez, J. & Dosta, J. & Romero-Güiza, M.S. & Fonoll, X. & Peces, M. & Astals, S., 2014. "A critical review on anaerobic co-digestion achievements between 2010 and 2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 412-427.
  • Handle: RePEc:eee:rensus:v:36:y:2014:i:c:p:412-427
    DOI: 10.1016/j.rser.2014.04.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114002664
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.04.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pantaleo, Antonio & Gennaro, Bernardo De & Shah, Nilay, 2013. "Assessment of optimal size of anaerobic co-digestion plants: An application to cattle farms in the province of Bari (Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 57-70.
    2. Alkaya, Emrah & Demirer, Göksel N., 2011. "Anaerobic mesophilic co-digestion of sugar-beet processing wastewater and beet-pulp in batch reactors," Renewable Energy, Elsevier, vol. 36(3), pages 971-975.
    3. Lönnqvist, Tomas & Silveira, Semida & Sanches-Pereira, Alessandro, 2013. "Swedish resource potential from residues and energy crops to enhance biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 298-314.
    4. Madsen, Michael & Holm-Nielsen, Jens Bo & Esbensen, Kim H., 2011. "Monitoring of anaerobic digestion processes: A review perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3141-3155, August.
    5. Cavinato, Cristina & Bolzonella, David & Pavan, Paolo & Fatone, Francesco & Cecchi, Franco, 2013. "Mesophilic and thermophilic anaerobic co-digestion of waste activated sludge and source sorted biowaste in pilot- and full-scale reactors," Renewable Energy, Elsevier, vol. 55(C), pages 260-265.
    6. Pastor, L. & Ruiz, L. & Pascual, A. & Ruiz, B., 2013. "Co-digestion of used oils and urban landfill leachates with sewage sludge and the effect on the biogas production," Applied Energy, Elsevier, vol. 107(C), pages 438-445.
    7. Goulding, D. & Power, N., 2013. "Which is the preferable biogas utilisation technology for anaerobic digestion of agricultural crops in Ireland: Biogas to CHP or biomethane as a transport fuel?," Renewable Energy, Elsevier, vol. 53(C), pages 121-131.
    8. Tedesco, S. & Benyounis, K.Y. & Olabi, A.G., 2013. "Mechanical pretreatment effects on macroalgae-derived biogas production in co-digestion with sludge in Ireland," Energy, Elsevier, vol. 61(C), pages 27-33.
    9. González-Fernández, Cristina & Molinuevo-Salces, Beatriz & García-González, Maria Cruz, 2011. "Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology," Applied Energy, Elsevier, vol. 88(10), pages 3448-3453.
    10. Chiu, Su-Fang & Chiu, Juei-Yu & Kuo, Wen-Chien, 2013. "Biological stoichiometric analysis of nutrition and ammonia toxicity in thermophilic anaerobic co-digestion of organic substrates under different organic loading rates," Renewable Energy, Elsevier, vol. 57(C), pages 323-329.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Haiping & Zhu, Nanwen, 2016. "Progress in inhibition mechanisms and process control of intermediates and by-products in sewage sludge anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 429-438.
    2. Jain, Siddharth & Jain, Shivani & Wolf, Ingo Tim & Lee, Jonathan & Tong, Yen Wah, 2015. "A comprehensive review on operating parameters and different pretreatment methodologies for anaerobic digestion of municipal solid waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 142-154.
    3. Theofanous, Elisavet & Kythreotou, Nicoletta & Panayiotou, Gregoris & Florides, Georgios & Vyrides, Ioannis, 2014. "Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus," Renewable Energy, Elsevier, vol. 71(C), pages 263-270.
    4. Elalami, D. & Carrere, H. & Monlau, F. & Abdelouahdi, K. & Oukarroum, A. & Barakat, A., 2019. "Pretreatment and co-digestion of wastewater sludge for biogas production: Recent research advances and trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    5. Montingelli, M.E. & Tedesco, S. & Olabi, A.G., 2015. "Biogas production from algal biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 961-972.
    6. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    7. Ganzoury, Mohamed A. & Allam, Nageh K., 2015. "Impact of nanotechnology on biogas production: A mini-review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1392-1404.
    8. Di Maria, Francesco & Micale, Caterina, 2017. "Energetic potential of the co-digestion of sludge with bio-waste in existing wastewater treatment plant digesters: A case study of an Italian province," Energy, Elsevier, vol. 136(C), pages 110-116.
    9. Budych-Gorzna, Magdalena & Smoczynski, Marcin & Oleskowicz-Popiel, Piotr, 2016. "Enhancement of biogas production at the municipal wastewater treatment plant by co-digestion with poultry industry waste," Applied Energy, Elsevier, vol. 161(C), pages 387-394.
    10. Wang, Hanxi & Xu, Jianling & Sheng, Lianxi & Liu, Xuejun, 2018. "Effect of addition of biogas slurry for anaerobic fermentation of deer manure on biogas production," Energy, Elsevier, vol. 165(PB), pages 411-418.
    11. O’Shea, Richard & Kilgallon, Ian & Wall, David & Murphy, Jerry D., 2016. "Quantification and location of a renewable gas industry based on digestion of wastes in Ireland," Applied Energy, Elsevier, vol. 175(C), pages 229-239.
    12. Huang, Zhi & Su, Bosheng & Wang, Yilin & Yuan, Shuo & Huang, Yupeng & Li, Liang & Cai, Jiahao & Chen, Zhiqiang, 2024. "A novel biogas-driven CCHP system based on chemical reinjection," Energy, Elsevier, vol. 297(C).
    13. Stanislaus, Mishma S. & Zhang, Nan & Zhao, Chenyu & Zhu, Qi & Li, Dawei & Yang, Yingnan, 2017. "Ipomoea aquatica as a new substrate for enhanced biohydrogen production by using digested sludge as inoculum," Energy, Elsevier, vol. 118(C), pages 264-271.
    14. Siswo Sumardiono & Gebyar Adisukmo & Muthia Hanif & Budiyono Budiyono & Heri Cahyono, 2021. "Effects of Pretreatment and Ratio of Solid Sago Waste to Rumen on Biogas Production through Solid-State Anaerobic Digestion," Sustainability, MDPI, vol. 13(13), pages 1-11, July.
    15. Nandor Csikos & Malte Schwanebeck & Michael Kuhwald & Peter Szilassi & Rainer Duttmann, 2019. "Density of Biogas Power Plants as An Indicator of Bioenergy Generated Transformation of Agricultural Landscapes," Sustainability, MDPI, vol. 11(9), pages 1-23, April.
    16. Kehinde O. Olatunji & Daniel M. Madyira & Jacob O. Amos, 2024. "Sustainable enhancement of biogas and methane yield of macroalgae biomass using different pretreatment techniques: A mini-review," Energy & Environment, , vol. 35(2), pages 1050-1088, March.
    17. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    18. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    19. Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Zarei, Alireza & Noshadi, Iman, 2013. "Transesterification of waste cooking oil by heteropoly acid (HPA) catalyst: Optimization and kinetic model," Applied Energy, Elsevier, vol. 102(C), pages 283-292.
    20. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:36:y:2014:i:c:p:412-427. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.