IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i18p4922-d416084.html
   My bibliography  Save this article

Techno-Economic Assessment: Food Emulsion Waste Management

Author

Listed:
  • George Lazaroiu

    (Department of Economic Sciences, Faculty of Economic Sciences, Spiru Haret University, 46G Fabricii Street, 030045 Bucharest, Romania)

  • Katarina Valaskova

    (Faculty of Operation and Economics of Transport and Communications, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovak Republic)

  • Elvira Nica

    (Faculty of Administration and Public Management, Bucharest Academy of Economic Studies, 010374 Bucharest, Romania)

  • Pavol Durana

    (Faculty of Operation and Economics of Transport and Communications, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovak Republic)

  • Pavol Kral

    (Faculty of Operation and Economics of Transport and Communications, University of Zilina, Univerzitna 1, 010 26 Zilina, Slovak Republic)

  • Petr Bartoš

    (Faculty of Agriculture, University of South Bohemia in České Budějovice, Studentská 1668, 370 05 České Budějovice, Czech Republic)

  • Anna Maroušková

    (Institute of Technology and Business in České Budějovice, Okružní 517/10, 370 01 České Budějovice, Czech Republic
    Faculty of Economics, University of South Bohemia in České Budějovice, Studentská 13, 370 05 České Budějovice, Czech Republic)

Abstract

Production of food-grade emulsions is continuously rising globally, especially in developing countries. The steepest demand growth is in the segment of inexpensive meat products where edible emulsions serve as lubricants to mitigate economic loses linked with mechanical damage during automated processing of artificial casings. Provided that production goal is to minimize emulsion transfer into the product, its vast majority becomes voluminous greasy and sticky waste. Public sewage treatment plants cannot process such waste, its cleaning processes tends to collapse under loads of emulsions. To make matters worse, composition of emulsions often changes (according to actual pricing of main components) and emulsion manufacturers carefully guard their recipes. Therefore, running of in-house sewage plants would require continuous experimentation linked with need for skilled personnel, frequent changes in technology setup and high operating costs in general. Consequently, it was repeatedly and independently reported that emulsion waste is poured onto wildlife, resulting in environmental damage and an intense rotting odor. Three new methods of emulsion breakdown are proposed and techno-economically assessed. High versatility of methods was confirmed and multiple austerity measures were incorporated. Emulsions are also assessed in terms of an energy source for aerobic and anaerobic microorganisms. It is reported that the addition of edible emulsion to compost does not result in increased product quality or cost reduction. It is firstly revealed that edible emulsions can instantly create an anaerobic environment and accelerate biogas production through the formation of surface films on feedstock surface. Adding waste food-grade emulsions to the biogas plant makes it possible to 100% reduce process water consumption in biogas stations as the process speed can be shortened by approximately 12%.

Suggested Citation

  • George Lazaroiu & Katarina Valaskova & Elvira Nica & Pavol Durana & Pavol Kral & Petr Bartoš & Anna Maroušková, 2020. "Techno-Economic Assessment: Food Emulsion Waste Management," Energies, MDPI, vol. 13(18), pages 1-12, September.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4922-:d:416084
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/18/4922/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/18/4922/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chin, May Ji & Poh, Phaik Eong & Tey, Beng Ti & Chan, Eng Seng & Chin, Kit Ling, 2013. "Biogas from palm oil mill effluent (POME): Opportunities and challenges from Malaysia's perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 717-726.
    2. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Christopoulou, Nicholetta & Goumenaki, Maria, 2007. "Optimization of biogas production from olive-oil mill wastewater, by codigesting with diluted poultry-manure," Applied Energy, Elsevier, vol. 84(6), pages 646-663, June.
    3. Gelegenis, John & Georgakakis, Dimitris & Angelidaki, Irini & Mavris, Vassilis, 2007. "Optimization of biogas production by co-digesting whey with diluted poultry manure," Renewable Energy, Elsevier, vol. 32(13), pages 2147-2160.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Diandian Ma & Benfu Lv & Ying Liu & Shuqin Liu & Xiuting Li, 2023. "Brand Premium and Carbon Information Disclosure Strategy: Evidence from China Listed Companies," Sustainability, MDPI, vol. 15(6), pages 1-21, March.
    2. Ahmed Zainul Abideen & Veera Pandiyan Kaliani Sundram & Shahryar Sorooshian, 2023. "Scope for Sustainable Development of Small Holder Farmers in the Palm Oil Supply Chain—A Systematic Literature Review and Thematic Scientific Mapping," Logistics, MDPI, vol. 7(1), pages 1-24, January.
    3. Romana Emilia Cramarenco & Monica Ioana Burca-Voicu & Dan-Cristian Dabija, 2023. "Organic Food Consumption During the COVID-19 Pandemic. A Bibliometric Analysis and Systematic Review," The AMFITEATRU ECONOMIC journal, Academy of Economic Studies - Bucharest, Romania, vol. 25(S17), pages 1042-1042, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Periyasamy Elaiyaraju & Nagarajan Partha, 2012. "Biogas Production from Sago (Tapioca) Wastewater Using Anaerobic Batch Reactor," Energy & Environment, , vol. 23(4), pages 631-645, June.
    2. Martinez, E. & Marcos, A. & Al-Kassir, A. & Jaramillo, M.A. & Mohamad, A.A., 2012. "Mathematical model of a laboratory-scale plant for slaughterhouse effluents biodigestion for biogas production," Applied Energy, Elsevier, vol. 95(C), pages 210-219.
    3. Dae-Yeol Cheong & Jeffrey Todd Harvey & Jinsu Kim & Changsoo Lee, 2019. "Improving Biomethanation of Chicken Manure by Co-Digestion with Ethanol Plant Effluent," IJERPH, MDPI, vol. 16(24), pages 1-10, December.
    4. González-Fernández, Cristina & Molinuevo-Salces, Beatriz & García-González, Maria Cruz, 2011. "Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology," Applied Energy, Elsevier, vol. 88(10), pages 3448-3453.
    5. Chandra, R. & Vijay, V.K. & Subbarao, P.M.V. & Khura, T.K., 2012. "Production of methane from anaerobic digestion of jatropha and pongamia oil cakes," Applied Energy, Elsevier, vol. 93(C), pages 148-159.
    6. Behera, Shuvashish & Arora, Richa & Nandhagopal, N. & Kumar, Sachin, 2014. "Importance of chemical pretreatment for bioconversion of lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 91-106.
    7. Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.
    8. Brown, N. & Güttler, J. & Shilton, A., 2016. "Overcoming the challenges of full scale anaerobic co-digestion of casein whey," Renewable Energy, Elsevier, vol. 96(PA), pages 425-432.
    9. Sorgüven, Esra & Özilgen, Mustafa, 2012. "Energy utilization, carbon dioxide emission, and exergy loss in flavored yogurt production process," Energy, Elsevier, vol. 40(1), pages 214-225.
    10. Pastor, L. & Ruiz, L. & Pascual, A. & Ruiz, B., 2013. "Co-digestion of used oils and urban landfill leachates with sewage sludge and the effect on the biogas production," Applied Energy, Elsevier, vol. 107(C), pages 438-445.
    11. Martínez-Ruano, Jimmy Anderson & Restrepo-Serna, Daissy Lorena & Carmona-Garcia, Estefanny & Giraldo, Jhonny Alejandro Poveda & Aroca, Germán & Cardona, Carlos Ariel, 2019. "Effect of co-digestion of milk-whey and potato stem on heat and power generation using biogas as an energy vector: Techno-economic assessment," Applied Energy, Elsevier, vol. 241(C), pages 504-518.
    12. Anahita Rabii & Saad Aldin & Yaser Dahman & Elsayed Elbeshbishy, 2019. "A Review on Anaerobic Co-Digestion with a Focus on the Microbial Populations and the Effect of Multi-Stage Digester Configuration," Energies, MDPI, vol. 12(6), pages 1-25, March.
    13. Koch, Konrad & Helmreich, Brigitte & Drewes, Jörg E., 2015. "Co-digestion of food waste in municipal wastewater treatment plants: Effect of different mixtures on methane yield and hydrolysis rate constant," Applied Energy, Elsevier, vol. 137(C), pages 250-255.
    14. Theofanous, Elisavet & Kythreotou, Nicoletta & Panayiotou, Gregoris & Florides, Georgios & Vyrides, Ioannis, 2014. "Energy production from piggery waste using anaerobic digestion: Current status and potential in Cyprus," Renewable Energy, Elsevier, vol. 71(C), pages 263-270.
    15. Yang Mo Gu & Seon Young Park & Ji Yeon Park & Byoung-In Sang & Byoung Seong Jeon & Hyunook Kim & Jin Hyung Lee, 2021. "Impact of Attrition Ball-Mill on Characteristics and Biochemical Methane Potential of Food Waste," Energies, MDPI, vol. 14(8), pages 1-10, April.
    16. Hosseini, Seyed Ehsan & Wahid, Mazlan Abdul, 2014. "Development of biogas combustion in combined heat and power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 868-875.
    17. Ayub, Yousaf & Ren, Jingzheng & Shi, Tao & Shen, Weifeng & He, Chang, 2023. "Poultry litter valorization: Development and optimization of an electro-chemical and thermal tri-generation process using an extreme gradient boosting algorithm," Energy, Elsevier, vol. 263(PC).
    18. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    19. Muhammad Arif Fikri Hamzah & Jamaliah Md Jahim & Peer Mohamed Abdul & Ahmad Jaril Asis, 2019. "Investigation of Temperature Effect on Start-Up Operation from Anaerobic Digestion of Acidified Palm Oil Mill Effluent," Energies, MDPI, vol. 12(13), pages 1-16, June.
    20. Orive, M. & Cebrián, M. & Zufía, J., 2016. "Techno-economic anaerobic co-digestion feasibility study for two-phase olive oil mill pomace and pig slurry," Renewable Energy, Elsevier, vol. 97(C), pages 532-540.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:18:p:4922-:d:416084. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.