IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics0306261923016872.html
   My bibliography  Save this article

Potential and flexibility analysis of electric taxi fleets V2G system based on trajectory data and agent-based modeling

Author

Listed:
  • Yu, Qing
  • Wang, Zhen
  • Song, Yancun
  • Shen, Xinwei
  • Zhang, Haoran

Abstract

The utilization of Vehicle-to-Grid (V2G) technology, which facilitates the integration of electric vehicles (EVs) into the power grid, is promising for energy management systems. Among them, electric taxi (ET) is an important part of EVs. The relatively stable and predictable operating patterns of the ET fleets could have a scale effect, effectively managing load demand and supply with V2G technology. This paper investigates the potential and flexibility of V2G technology for urban power system based on real-world ET trajectory data. To evaluate the flexibility of V2G more precisely, a general framework is proposed to infer vehicle charging, energy consumption, and reconstruction of the State of Charge (SoC) for ETs. The V2G potential estimation model is established for each ET, followed by a bottom-up agent-based model to simulate flexibility changes in the system during various V2G events. The proposed methodology is tested on 19,900 ETs in Shenzhen over a month to explore the potential and flexibility of V2G technology. The results show that the V2G system could supply at least 50 MW for 1 h, 30 MW for 2 h, and 20 MW for 3 h during peak periods, while simultaneously recovering within 2–3 h, without disrupting the regular operations of ETs. The great potential of ETs to supply additional energy during peak periods and recover energy during valley periods is highlighted, which could lead to a more efficient and sustainable management of energy resources.

Suggested Citation

  • Yu, Qing & Wang, Zhen & Song, Yancun & Shen, Xinwei & Zhang, Haoran, 2024. "Potential and flexibility analysis of electric taxi fleets V2G system based on trajectory data and agent-based modeling," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016872
    DOI: 10.1016/j.apenergy.2023.122323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923016872
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo, 2020. "Actors, business models, and innovation activity systems for vehicle-to-grid (V2G) technology: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Bishop, Justin D.K. & Axon, Colin J. & Bonilla, David & Tran, Martino & Banister, David & McCulloch, Malcolm D., 2013. "Evaluating the impact of V2G services on the degradation of batteries in PHEV and EV," Applied Energy, Elsevier, vol. 111(C), pages 206-218.
    3. Sai Sudharshan Ravi & Muhammad Aziz, 2022. "Utilization of Electric Vehicles for Vehicle-to-Grid Services: Progress and Perspectives," Energies, MDPI, vol. 15(2), pages 1-27, January.
    4. Kester, Johannes & Noel, Lance & Zarazua de Rubens, Gerardo & Sovacool, Benjamin K., 2018. "Promoting Vehicle to Grid (V2G) in the Nordic region: Expert advice on policy mechanisms for accelerated diffusion," Energy Policy, Elsevier, vol. 116(C), pages 422-432.
    5. Sarabi, Siyamak & Davigny, Arnaud & Courtecuisse, Vincent & Riffonneau, Yann & Robyns, Benoît, 2016. "Potential of vehicle-to-grid ancillary services considering the uncertainties in plug-in electric vehicle availability and service/localization limitations in distribution grids," Applied Energy, Elsevier, vol. 171(C), pages 523-540.
    6. Riccardo Iacobucci & Benjamin McLellan & Tetsuo Tezuka, 2018. "The Synergies of Shared Autonomous Electric Vehicles with Renewable Energy in a Virtual Power Plant and Microgrid," Energies, MDPI, vol. 11(8), pages 1-20, August.
    7. Manzolli, Jônatas Augusto & Trovão, João Pedro F. & Henggeler Antunes, Carlos, 2022. "Electric bus coordinated charging strategy considering V2G and battery degradation," Energy, Elsevier, vol. 254(PA).
    8. Abdullah Dik & Siddig Omer & Rabah Boukhanouf, 2022. "Electric Vehicles: V2G for Rapid, Safe, and Green EV Penetration," Energies, MDPI, vol. 15(3), pages 1-26, January.
    9. Zhang, Cong & Greenblatt, Jeffery B. & MacDougall, Pamela & Saxena, Samveg & Jayam Prabhakar, Aditya, 2020. "Quantifying the benefits of electric vehicles on the future electricity grid in the midwestern United States," Applied Energy, Elsevier, vol. 270(C).
    10. Sovacool, Benjamin K. & Kester, Johannes & Noel, Lance & de Rubens, Gerardo Zarazua, 2019. "Energy Injustice and Nordic Electric Mobility: Inequality, Elitism, and Externalities in the Electrification of Vehicle-to-Grid (V2G) Transport," Ecological Economics, Elsevier, vol. 157(C), pages 205-217.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingke Fang & Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2024. "Opportunities and Challenges of Fuel Cell Electric Vehicle-to-Grid (V2G) Integration," Energies, MDPI, vol. 17(22), pages 1-20, November.
    2. Gharibvand, Hossein & Gharehpetian, G.B. & Anvari-Moghaddam, A., 2024. "A survey on microgrid flexibility resources, evaluation metrics and energy storage effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Md. Rayid Hasan Mojumder & Fahmida Ahmed Antara & Md. Hasanuzzaman & Basem Alamri & Mohammad Alsharef, 2022. "Electric Vehicle-to-Grid (V2G) Technologies: Impact on the Power Grid and Battery," Sustainability, MDPI, vol. 14(21), pages 1-53, October.
    2. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    3. Salvatore Micari & Giuseppe Napoli, 2024. "Electric Vehicles for a Flexible Energy System: Challenges and Opportunities," Energies, MDPI, vol. 17(22), pages 1-26, November.
    4. Youssef Amry & Elhoussin Elbouchikhi & Franck Le Gall & Mounir Ghogho & Soumia El Hani, 2022. "Electric Vehicle Traction Drives and Charging Station Power Electronics: Current Status and Challenges," Energies, MDPI, vol. 15(16), pages 1-30, August.
    5. Nagel, Niels Oliver & Jåstad, Eirik Ogner & Martinsen, Thomas, 2024. "The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home- and public parking potentials," Energy, Elsevier, vol. 293(C).
    6. Wen, Shuang & Lin, Ni & Huang, Shengxu & Wang, Zhenpo & Zhang, Zhaosheng, 2023. "Lithium battery health state assessment based on vehicle-to-grid (V2G) real-world data and natural gradient boosting model," Energy, Elsevier, vol. 284(C).
    7. Alexandre F. M. Correia & Pedro Moura & Aníbal T. de Almeida, 2022. "Technical and Economic Assessment of Battery Storage and Vehicle-to-Grid Systems in Building Microgrids," Energies, MDPI, vol. 15(23), pages 1-23, November.
    8. Zeng, Bo & Sun, Bo & Wei, Xuan & Gong, Dunwei & Zhao, Dongbo & Singh, Chanan, 2020. "Capacity value estimation of plug-in electric vehicle parking-lots in urban power systems: A physical-social coupling perspective," Applied Energy, Elsevier, vol. 265(C).
    9. Baxter Williams & Daniel Bishop & Patricio Gallardo & J. Geoffrey Chase, 2023. "Demand Side Management in Industrial, Commercial, and Residential Sectors: A Review of Constraints and Considerations," Energies, MDPI, vol. 16(13), pages 1-28, July.
    10. Thompson, Andrew W. & Perez, Yannick, 2020. "Vehicle-to-Everything (V2X) energy services, value streams, and regulatory policy implications," Energy Policy, Elsevier, vol. 137(C).
    11. Feng Zhou & Weizhen Shi & Xiaomei Li & Chao Yang & Ting Hao, 2023. "Cooperative Game Cooperative Control Strategy for Electric Vehicles Based on Tariff Leverage," Energies, MDPI, vol. 16(12), pages 1-20, June.
    12. Zhang, Haifeng & Tian, Ming & Zhang, Cong & Wang, Bin & Wang, Dai, 2021. "A systematic solution to quantify economic values of vehicle grid integration," Energy, Elsevier, vol. 232(C).
    13. Daniel Icaza & David Borge-Diez & Santiago Pulla Galindo & Carlos Flores-Vázquez, 2023. "Analysis of Smart Energy Systems and High Participation of V2G Impact for the Ecuadorian 100% Renewable Energy System by 2050," Energies, MDPI, vol. 16(10), pages 1-24, May.
    14. Keiner, Dominik & Thoma, Christian & Bogdanov, Dmitrii & Breyer, Christian, 2023. "Seasonal hydrogen storage for residential on- and off-grid solar photovoltaics prosumer applications: Revolutionary solution or niche market for the energy transition until 2050?," Applied Energy, Elsevier, vol. 340(C).
    15. Ryosuke Kataoka & Kazuhiko Ogimoto & Yumiko Iwafune, 2021. "Marginal Value of Vehicle-to-Grid Ancillary Service in a Power System with Variable Renewable Energy Penetration and Grid Side Flexibility," Energies, MDPI, vol. 14(22), pages 1-21, November.
    16. Andrew W Thompson & Yannick Perez, 2019. "Vehicle-to-Anything (V2X) Energy Services, Value Streams, and Regulatory Policy Implications," Working Papers hal-02265826, HAL.
    17. Daniele Menniti & Anna Pinnarelli & Nicola Sorrentino & Pasquale Vizza & Giovanni Brusco & Giuseppe Barone & Gianluca Marano, 2022. "Techno Economic Analysis of Electric Vehicle Grid Integration Aimed to Provide Network Flexibility Services in Italian Regulatory Framework," Energies, MDPI, vol. 15(7), pages 1-34, March.
    18. Mohammad Kamrul Hasan & AKM Ahasan Habib & Shayla Islam & Mohammed Balfaqih & Khaled M. Alfawaz & Dalbir Singh, 2023. "Smart Grid Communication Networks for Electric Vehicles Empowering Distributed Energy Generation: Constraints, Challenges, and Recommendations," Energies, MDPI, vol. 16(3), pages 1-20, January.
    19. Nnaemeka Vincent Emodi & Scott Dwyer & Kriti Nagrath & John Alabi, 2022. "Electromobility in Australia: Tariff Design Structure and Consumer Preferences for Mobile Distributed Energy Storage," Sustainability, MDPI, vol. 14(11), pages 1-18, May.
    20. Krzysztof Zagrajek, 2021. "A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision," Energies, MDPI, vol. 14(21), pages 1-38, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923016872. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.