IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v17y2025i5p1975-d1599457.html
   My bibliography  Save this article

Global Trends in Community Energy Storage: A Comprehensive Analysis of the Current and Future Direction

Author

Listed:
  • Jake Elliot

    (School of Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia)

  • Jason Brown

    (School of Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia)

  • Njabulo Mlilo

    (School of Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia)

  • Les Bowtell

    (School of Engineering, University of Southern Queensland, Toowoomba, QLD 4350, Australia)

Abstract

Community Energy Storage (CES) is a rapidly evolving field with the potential to transform the modern energy landscape and enhance sustainability initiatives. This comprehensive review paper explores the multifaceted nature of CES, encompassing its diverse technologies, ownership models, regulatory frameworks, sharing paradigms, and applications. Technical aspects of various CES technologies, including batteries, flow batteries, pumped hydro storage, hydrogen-based systems, compressed air energy storage, flywheels, thermal storage, and future technology have been reviewed in detail. Additionally, different ownership models, ranging from private and community-owned to government-led initiatives have been examined. Regulatory frameworks, investment incentives, and grid integration standards are also explored, highlighting the importance of clear guidelines and international collaboration for the successful deployment of CES globally. Furthermore, diverse applications of CES, including increased self-sufficiency, lower energy bills, ancillary services, demand response, and bulk energy applications are discussed. By addressing the challenges and opportunities associated with CES, this review paper aims to contribute to the advancement and widespread adoption of this promising technology, ultimately fostering a more sustainable, resilient, and equitable energy future to meet global net-zero goals. This is achieved by summarising the future direction of CES and posing some yet unexplored research questions.

Suggested Citation

  • Jake Elliot & Jason Brown & Njabulo Mlilo & Les Bowtell, 2025. "Global Trends in Community Energy Storage: A Comprehensive Analysis of the Current and Future Direction," Sustainability, MDPI, vol. 17(5), pages 1-32, February.
  • Handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1975-:d:1599457
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/17/5/1975/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/17/5/1975/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lyons, P.F. & Wade, N.S. & Jiang, T. & Taylor, P.C. & Hashiesh, F. & Michel, M. & Miller, D., 2015. "Design and analysis of electrical energy storage demonstration projects on UK distribution networks," Applied Energy, Elsevier, vol. 137(C), pages 677-691.
    2. Parra, David & Gillott, Mark & Norman, Stuart A. & Walker, Gavin S., 2015. "Optimum community energy storage system for PV energy time-shift," Applied Energy, Elsevier, vol. 137(C), pages 576-587.
    3. Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
    4. Greenblatt, Jeffery B. & Succar, Samir & Denkenberger, David C. & Williams, Robert H. & Socolow, Robert H., 2007. "Baseload wind energy: modeling the competition between gas turbines and compressed air energy storage for supplemental generation," Energy Policy, Elsevier, vol. 35(3), pages 1474-1492, March.
    5. Hemmati, Reza & Saboori, Hedayat, 2016. "Emergence of hybrid energy storage systems in renewable energy and transport applications – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 11-23.
    6. Carton, J.G. & Olabi, A.G., 2010. "Wind/hydrogen hybrid systems: Opportunity for Ireland’s wind resource to provide consistent sustainable energy supply," Energy, Elsevier, vol. 35(12), pages 4536-4544.
    7. Pickard, William F. & Shen, Amy Q. & Hansing, Nicholas J., 2009. "Parking the power: Strategies and physical limitations for bulk energy storage in supply-demand matching on a grid whose input power is provided by intermittent sources," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1934-1945, October.
    8. Kaldellis, J.K. & Zafirakis, D., 2007. "Optimum energy storage techniques for the improvement of renewable energy sources-based electricity generation economic efficiency," Energy, Elsevier, vol. 32(12), pages 2295-2305.
    9. Yu, Qing & Wang, Zhen & Song, Yancun & Shen, Xinwei & Zhang, Haoran, 2024. "Potential and flexibility analysis of electric taxi fleets V2G system based on trajectory data and agent-based modeling," Applied Energy, Elsevier, vol. 355(C).
    10. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    11. Baker, John, 2008. "New technology and possible advances in energy storage," Energy Policy, Elsevier, vol. 36(12), pages 4368-4373, December.
    12. Ibrahim, H. & Ilinca, A. & Perron, J., 2008. "Energy storage systems--Characteristics and comparisons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(5), pages 1221-1250, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    2. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    3. Luo, Xing & Wang, Jihong & Dooner, Mark & Clarke, Jonathan, 2015. "Overview of current development in electrical energy storage technologies and the application potential in power system operation," Applied Energy, Elsevier, vol. 137(C), pages 511-536.
    4. Zhang, Ziyu & Ding, Tao & Zhou, Quan & Sun, Yuge & Qu, Ming & Zeng, Ziyu & Ju, Yuntao & Li, Li & Wang, Kang & Chi, Fangde, 2021. "A review of technologies and applications on versatile energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Argyrou, Maria C. & Christodoulides, Paul & Kalogirou, Soteris A., 2018. "Energy storage for electricity generation and related processes: Technologies appraisal and grid scale applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 804-821.
    6. Gaurav Chaudhary & Jacob J. Lamb & Odne S. Burheim & Bjørn Austbø, 2021. "Review of Energy Storage and Energy Management System Control Strategies in Microgrids," Energies, MDPI, vol. 14(16), pages 1-26, August.
    7. Arteconi, A. & Hewitt, N.J. & Polonara, F., 2012. "State of the art of thermal storage for demand-side management," Applied Energy, Elsevier, vol. 93(C), pages 371-389.
    8. Javed, Muhammad Shahzad & Ma, Tao & Jurasz, Jakub & Amin, Muhammad Yasir, 2020. "Solar and wind power generation systems with pumped hydro storage: Review and future perspectives," Renewable Energy, Elsevier, vol. 148(C), pages 176-192.
    9. Saboori, Hedayat & Hemmati, Reza, 2017. "Maximizing DISCO profit in active distribution networks by optimal planning of energy storage systems and distributed generators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 365-372.
    10. Evans, Annette & Strezov, Vladimir & Evans, Tim J., 2012. "Assessment of utility energy storage options for increased renewable energy penetration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4141-4147.
    11. Dhillon, Javed & Kumar, Arun & Singal, S.K., 2014. "Optimization methods applied for Wind–PSP operation and scheduling under deregulated market: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 682-700.
    12. Linda Barelli & Gianni Bidini & Fabio Bonucci & Luca Castellini & Simone Castellini & Andrea Ottaviano & Dario Pelosi & Alberto Zuccari, 2018. "Dynamic Analysis of a Hybrid Energy Storage System (H-ESS) Coupled to a Photovoltaic (PV) Plant," Energies, MDPI, vol. 11(2), pages 1-23, February.
    13. Hamdy, Sarah & Morosuk, Tatiana & Tsatsaronis, George, 2019. "Exergoeconomic optimization of an adiabatic cryogenics-based energy storage system," Energy, Elsevier, vol. 183(C), pages 812-824.
    14. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    15. Haas, J. & Cebulla, F. & Cao, K. & Nowak, W. & Palma-Behnke, R. & Rahmann, C. & Mancarella, P., 2017. "Challenges and trends of energy storage expansion planning for flexibility provision in low-carbon power systems – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 603-619.
    16. Parra, David & Swierczynski, Maciej & Stroe, Daniel I. & Norman, Stuart.A. & Abdon, Andreas & Worlitschek, Jörg & O’Doherty, Travis & Rodrigues, Lucelia & Gillott, Mark & Zhang, Xiaojin & Bauer, Chris, 2017. "An interdisciplinary review of energy storage for communities: Challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 730-749.
    17. Koirala, Binod Prasad & van Oost, Ellen & van der Windt, Henny, 2018. "Community energy storage: A responsible innovation towards a sustainable energy system?," Applied Energy, Elsevier, vol. 231(C), pages 570-585.
    18. Jacob, Ammu Susanna & Banerjee, Rangan & Ghosh, Prakash C., 2018. "Sizing of hybrid energy storage system for a PV based microgrid through design space approach," Applied Energy, Elsevier, vol. 212(C), pages 640-653.
    19. Xiaotong Qie & Rui Zhang & Yanyong Hu & Xialing Sun & Xue Chen, 2021. "A Multi-Criteria Decision-Making Approach for Energy Storage Technology Selection Based on Demand," Energies, MDPI, vol. 14(20), pages 1-29, October.
    20. Zakeri, Behnam & Syri, Sanna, 2015. "Electrical energy storage systems: A comparative life cycle cost analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 569-596.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:17:y:2025:i:5:p:1975-:d:1599457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.