IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v376y2024ipbs0306261924016945.html
   My bibliography  Save this article

Cooperative V2G-enabled vehicle-to-vehicle sharing in energy and reserve markets: A coalitional approach

Author

Listed:
  • Wen, Jianfeng
  • Gan, Wei
  • Chu, Chia-Chi
  • Wang, Jingbo
  • Jiang, Lin

Abstract

The dynamics of electric vehicles (EVs) charging significantly influence the current power system dynamics. However, with advancements in battery technology and charging infrastructure, EVs can also serve as energy storage systems through vehicle-to-grid (V2G) technology. This opens up possibilities for novel approaches, such as a coalition-based V2G-enabled vehicle-to-vehicle (V2V) energy and reserve sharing mechanism. Unlike traditional transactive energy models that often under-utilize EVs due to mismatches with smaller renewable outputs and peak loads, the proposed cooperative V2V sharing mechanism aims to maximize the use of EVs’ charging and discharging capabilities. It forms a grand coalition of EV users to optimize energy and reserve market participation. The model introduces mathematical formulations to describe how EVs collaborate in both energy and reserve markets. It ensures fairness and stability in pay allocations among users within the cooperative framework. The theoretical foundation includes proof of balance in the coalition approach and a two-stage imputation method to achieve fair and optimal payoff distribution. This minimizes incentives for users to defect from the coalition, ensuring stability. To address scalability challenges inherent in coalition formation problems, a decomposition algorithm is proposed. This algorithm enhances efficiency in solving problems that grow exponentially with the number of users. The effectiveness and superiority of this approach are validated through applications to various community energy systems of different sizes. The proposed plan can increase 22.21% of the total payoff in 10-users case and 22.39% in 30-users case. The computation time scales near-linearly with the number of users, although the computation scales exponentially with it. These demonstrations highlight its capability in modeling and solving complex energy sharing scenarios.

Suggested Citation

  • Wen, Jianfeng & Gan, Wei & Chu, Chia-Chi & Wang, Jingbo & Jiang, Lin, 2024. "Cooperative V2G-enabled vehicle-to-vehicle sharing in energy and reserve markets: A coalitional approach," Applied Energy, Elsevier, vol. 376(PB).
  • Handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016945
    DOI: 10.1016/j.apenergy.2024.124311
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924016945
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.124311?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Jie & Huang, Yuping, 2022. "The short-term optimal resource allocation approach for electric vehicles and V2G service stations," Applied Energy, Elsevier, vol. 319(C).
    2. Shang, Yitong & Li, Sen, 2024. "FedPT-V2G: Security enhanced federated transformer learning for real-time V2G dispatch with non-IID data," Applied Energy, Elsevier, vol. 358(C).
    3. Suijs, Jeroen & Borm, Peter & De Waegenaere, Anja & Tijs, Stef, 1999. "Cooperative games with stochastic payoffs," European Journal of Operational Research, Elsevier, vol. 113(1), pages 193-205, February.
    4. Lee, Won-Poong & Han, Dongjun & Won, Dongjun, 2022. "Grid-Oriented Coordination Strategy of Prosumers Using Game-theoretic Peer-to-Peer Trading Framework in Energy Community," Applied Energy, Elsevier, vol. 326(C).
    5. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    6. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    7. Luo, Qingsong & Zhou, Yimin & Hou, Weicheng & Peng, Lei, 2022. "A hierarchical blockchain architecture based V2G market trading system," Applied Energy, Elsevier, vol. 307(C).
    8. Visaria, Anant Atul & Jensen, Anders Fjendbo & Thorhauge, Mikkel & Mabit, Stefan Eriksen, 2022. "User preferences for EV charging, pricing schemes, and charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 120-143.
    9. Lin, Jason & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Comparative analysis of auction mechanisms and bidding strategies for P2P solar transactive energy markets," Applied Energy, Elsevier, vol. 255(C).
    10. Yu, Qing & Wang, Zhen & Song, Yancun & Shen, Xinwei & Zhang, Haoran, 2024. "Potential and flexibility analysis of electric taxi fleets V2G system based on trajectory data and agent-based modeling," Applied Energy, Elsevier, vol. 355(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingke Fang & Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2024. "Opportunities and Challenges of Fuel Cell Electric Vehicle-to-Grid (V2G) Integration," Energies, MDPI, vol. 17(22), pages 1-20, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Hong & Wang, Shengwei, 2022. "Multi-level optimal dispatch strategy and profit-sharing mechanism for unlocking energy flexibilities of non-residential building clusters in electricity markets of multiple flexibility services," Renewable Energy, Elsevier, vol. 201(P1), pages 35-45.
    2. Tingke Fang & Annette von Jouanne & Emmanuel Agamloh & Alex Yokochi, 2024. "Opportunities and Challenges of Fuel Cell Electric Vehicle-to-Grid (V2G) Integration," Energies, MDPI, vol. 17(22), pages 1-20, November.
    3. Pegah Alaee & Julius Bems & Amjad Anvari-Moghaddam, 2023. "A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management," Energies, MDPI, vol. 16(9), pages 1-28, April.
    4. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    5. Zhang, Chengquan & Kitamura, Hiroshi & Goto, Mika, 2024. "Feasibility of vehicle-to-grid (V2G) implementation in Japan: A regional analysis of the electricity supply and demand adjustment market," Energy, Elsevier, vol. 311(C).
    6. Wu, Chun & Chen, Xingying & Hua, Haochen & Yu, Kun & Gan, Lei & Shen, Jun & Ding, Yi, 2024. "Peer-to-peer energy trading optimization for community prosumers considering carbon cap-and-trade," Applied Energy, Elsevier, vol. 358(C).
    7. Moradi, Amir & Salehi, Javad & Shafie-khah, Miadreza, 2024. "An interactive framework for strategic participation of a price-maker energy hub in the local gas and power markets based on the MPEC method," Energy, Elsevier, vol. 307(C).
    8. Verónica Anadón Martínez & Andreas Sumper, 2023. "Planning and Operation Objectives of Public Electric Vehicle Charging Infrastructures: A Review," Energies, MDPI, vol. 16(14), pages 1-41, July.
    9. Németh, Tibor & Pintér, Miklós, 2017. "The non-emptiness of the weak sequential core of a transferable utility game with uncertainty," Journal of Mathematical Economics, Elsevier, vol. 69(C), pages 1-6.
    10. Syed Muhammad Ahsan & Hassan Abbas Khan & Sarmad Sohaib & Anas M. Hashmi, 2023. "Optimized Power Dispatch for Smart Building and Electric Vehicles with V2V, V2B and V2G Operations," Energies, MDPI, vol. 16(13), pages 1-15, June.
    11. Tommy Lundgren & Mattias Vesterberg, 2024. "Efficiency in electricity distribution in Sweden and the effects of small-scale generation, electric vehicles and dynamic tariffs," Journal of Productivity Analysis, Springer, vol. 62(2), pages 121-137, October.
    12. Ali Darudi & Hannes Weigt, 2024. "Review and Assessment of Decarbonized Future Electricity Markets," Energies, MDPI, vol. 17(18), pages 1-38, September.
    13. Monroy, L. & Hinojosa, M.A. & Mármol, A.M. & Fernández, F.R., 2013. "Set-valued cooperative games with fuzzy payoffs. The fuzzy assignment game," European Journal of Operational Research, Elsevier, vol. 225(1), pages 85-90.
    14. Jianfei Shen & Fengyun Li & Di Shi & Hongze Li & Xinhua Yu, 2018. "Factors Affecting the Economics of Distributed Natural Gas-Combined Cooling, Heating and Power Systems in China: A Systematic Analysis Based on the Integrated Decision Making Trial and Evaluation Labo," Energies, MDPI, vol. 11(9), pages 1-28, September.
    15. Danica Djurić Ilić, 2020. "Classification of Measures for Dealing with District Heating Load Variations—A Systematic Review," Energies, MDPI, vol. 14(1), pages 1-27, December.
    16. Yongjie Yang & Yulong Li & Yan Cai & Hui Tang & Peng Xu, 2024. "Data-Driven Golden Jackal Optimization–Long Short-Term Memory Short-Term Energy-Consumption Prediction and Optimization System," Energies, MDPI, vol. 17(15), pages 1-20, July.
    17. Finck, Christian & Li, Rongling & Zeiler, Wim, 2020. "Optimal control of demand flexibility under real-time pricing for heating systems in buildings: A real-life demonstration," Applied Energy, Elsevier, vol. 263(C).
    18. Hongxin Bai & Shang Li & Zhenzhen He, 2010. "The Kernel of the Stochastic Cooperative Game," Modern Applied Science, Canadian Center of Science and Education, vol. 4(4), pages 126-126, April.
    19. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    20. Meca, Ana & Timmer, Judith & Garcia-Jurado, Ignacio & Borm, Peter, 2004. "Inventory games," European Journal of Operational Research, Elsevier, vol. 156(1), pages 127-139, July.
      • Meca-Martinez, A. & Timmer, J.B. & Garcia-Jurado, I. & Borm, P.E.M., 1999. "Inventory Games," Discussion Paper 1999-53, Tilburg University, Center for Economic Research.
      • Meca-Martinez, A. & Timmer, J.B. & Garcia-Jurado, I. & Borm, P.E.M., 1999. "Inventory Games," Other publications TiSEM 21f26b3f-7fae-4f19-908f-a, Tilburg University, School of Economics and Management.
      • Meca, A. & Timmer, J.B. & Garcia-Jurado, I. & Borm, P.E.M., 2004. "Inventory games," Other publications TiSEM 49368f2d-02fc-49c9-9d74-8, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:376:y:2024:i:pb:s0306261924016945. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.