IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v311y2024ics0360544224030937.html
   My bibliography  Save this article

Feasibility of vehicle-to-grid (V2G) implementation in Japan: A regional analysis of the electricity supply and demand adjustment market

Author

Listed:
  • Zhang, Chengquan
  • Kitamura, Hiroshi
  • Goto, Mika

Abstract

Vehicle-to-Grid (V2G) technology forms a critical bridge between electric vehicles (EVs) and renewable energy, playing a transformative role in the global shift towards a low-carbon future. Despite its promise, the impact of regional differences on V2G potential, particularly within specific application scenarios, remains largely unexplored. This study employs an agent-based modeling approach to evaluate V2G potential across Japan's 47 prefectures, with a focus on its integration into an energy reserve service business model. Our analysis reveals that EV ownership is the dominant factor influencing regional variability, with the Tokyo Metropolitan Area, Aichi, and Kanagawa emerging as top candidates for V2G deployment. Interestingly, when EV ownership is excluded from consideration, regions like Okinawa, Kagoshima, and Ibaraki show leadership in V2G potential. These findings highlight the existence of regional priorities for V2G application. Moreover, a ‘High Demand Disparity’ is observed in the power supply and demand adjustment market, where V2G systems are often either underutilized or overwhelmed, leaving many idle. The study underscores the need for region-specific strategies and the integration of diverse business models to fully capitalize on V2G's potential in various demand adjustment scenarios.

Suggested Citation

  • Zhang, Chengquan & Kitamura, Hiroshi & Goto, Mika, 2024. "Feasibility of vehicle-to-grid (V2G) implementation in Japan: A regional analysis of the electricity supply and demand adjustment market," Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224030937
    DOI: 10.1016/j.energy.2024.133317
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224030937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133317?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wei, Hongqian & Zhang, Youtong & Wang, Yongzhen & Hua, Weiqi & Jing, Rui & Zhou, Yue, 2022. "Planning integrated energy systems coupling V2G as a flexible storage," Energy, Elsevier, vol. 239(PB).
    2. Rahman, Md Mustafizur & Gemechu, Eskinder & Oni, Abayomi Olufemi & Kumar, Amit, 2023. "The development of a techno-economic model for assessment of cost of energy storage for vehicle-to-grid applications in a cold climate," Energy, Elsevier, vol. 262(PA).
    3. Mehdizadeh, Milad & Nayum, Alim & Nordfjærn, Trond & Klöckner, Christian A., 2024. "Are Norwegian car users ready for a transition to vehicle-to-grid technology?," Transport Policy, Elsevier, vol. 146(C), pages 126-136.
    4. Muchun Wan & Heyang Yu & Yingning Huo & Kan Yu & Quanyuan Jiang & Guangchao Geng, 2024. "Feasibility and Challenges for Vehicle-to-Grid in Electricity Market: A Review," Energies, MDPI, vol. 17(3), pages 1-23, January.
    5. Liao, Zitong & Taiebat, Morteza & Xu, Ming, 2021. "Shared autonomous electric vehicle fleets with vehicle-to-grid capability: Economic viability and environmental co-benefits," Applied Energy, Elsevier, vol. 302(C).
    6. Abdelfattah, Wael & Abdelhamid, Ahmed Sayed & Hasanien, Hany M. & Rashad, Basem Abd-Elhamed, 2024. "Smart vehicle-to-grid integration strategy for enhancing distribution system performance and electric vehicle profitability," Energy, Elsevier, vol. 302(C).
    7. Singh, Kamini & Singh, Anoop, 2022. "Behavioural modelling for personal and societal benefits of V2G/V2H integration on EV adoption," Applied Energy, Elsevier, vol. 319(C).
    8. Tao, Ye & Huang, Miaohua & Chen, Yupu & Yang, Lan, 2020. "Orderly charging strategy of battery electric vehicle driven by real-world driving data," Energy, Elsevier, vol. 193(C).
    9. Felipe Gonzalez & Marc Petit & Yannick Perez, 2021. "Plug-in behavior of electric vehicles users: Insights from a large-scale trial and impacts for grid integration studies," Post-Print hal-03363782, HAL.
    10. Lauvergne, Rémi & Perez, Yannick & Françon, Mathilde & Tejeda De La Cruz, Alberto, 2022. "Integration of electric vehicles into transmission grids: A case study on generation adequacy in Europe in 2040," Applied Energy, Elsevier, vol. 326(C).
    11. Gough, Rebecca & Dickerson, Charles & Rowley, Paul & Walsh, Chris, 2017. "Vehicle-to-grid feasibility: A techno-economic analysis of EV-based energy storage," Applied Energy, Elsevier, vol. 192(C), pages 12-23.
    12. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhang, Zhaosheng & Dorrell, David G. & Li, Xiaohui, 2022. "Battery electric vehicle usage pattern analysis driven by massive real-world data," Energy, Elsevier, vol. 250(C).
    13. Ullah, Zia & Wang, Shaorong & Wu, Guan & Hasanien, Hany M. & Rehman, Anis Ur & Turky, Rania A. & Elkadeem, Mohamed R., 2023. "Optimal scheduling and techno-economic analysis of electric vehicles by implementing solar-based grid-tied charging station," Energy, Elsevier, vol. 267(C).
    14. Sekyung Han & Soohee Han, 2013. "Economic Feasibility of V2G Frequency Regulation in Consideration of Battery Wear," Energies, MDPI, vol. 6(2), pages 1-18, February.
    15. Yu, Qing & Wang, Zhen & Song, Yancun & Shen, Xinwei & Zhang, Haoran, 2024. "Potential and flexibility analysis of electric taxi fleets V2G system based on trajectory data and agent-based modeling," Applied Energy, Elsevier, vol. 355(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madani, Seyyedreza & Pineau, Pierre-Olivier, 2024. "Investment in vehicle-to-grid and distributed energy resources: Distributor versus prosumer perspectives and the impact of rate structures," Utilities Policy, Elsevier, vol. 88(C).
    2. Wiedemann, Nina & Xin, Yanan & Medici, Vasco & Nespoli, Lorenzo & Suel, Esra & Raubal, Martin, 2024. "Vehicle-to-grid for car sharing - A simulation study for 2030," Applied Energy, Elsevier, vol. 372(C).
    3. Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhao, Yiwen & Zhan, Weipeng, 2023. "Stacking regression technology with event profile for electric vehicle fast charging behavior prediction," Applied Energy, Elsevier, vol. 336(C).
    4. Kreft, Markus & Brudermueller, Tobias & Fleisch, Elgar & Staake, Thorsten, 2024. "Predictability of electric vehicle charging: Explaining extensive user behavior-specific heterogeneity," Applied Energy, Elsevier, vol. 370(C).
    5. Qiu, Dawei & Wang, Yi & Sun, Mingyang & Strbac, Goran, 2022. "Multi-service provision for electric vehicles in power-transportation networks towards a low-carbon transition: A hierarchical and hybrid multi-agent reinforcement learning approach," Applied Energy, Elsevier, vol. 313(C).
    6. Dong, Xiao-Jian & Shen, Jia-Ni & Liu, Cheng-Wu & Ma, Zi-Feng & He, Yi-Jun, 2024. "Simultaneous capacity configuration and scheduling optimization of an integrated electrical vehicle charging station with photovoltaic and battery energy storage system," Energy, Elsevier, vol. 289(C).
    7. Sharma, S. & Jain, Prerna, 2023. "Risk-averse integrated DR and dynamic V2G scheduling of parking lot operator for enhanced market efficiency," Energy, Elsevier, vol. 275(C).
    8. Mohd Bilal & Pitshou N. Bokoro & Gulshan Sharma & Giovanni Pau, 2024. "A Cost-Effective Energy Management Approach for On-Grid Charging of Plug-in Electric Vehicles Integrated with Hybrid Renewable Energy Sources," Energies, MDPI, vol. 17(16), pages 1-35, August.
    9. Bogdanov, Dmitrii & Breyer, Christian, 2024. "Role of smart charging of electric vehicles and vehicle-to-grid in integrated renewables-based energy systems on country level," Energy, Elsevier, vol. 301(C).
    10. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    11. Wang, Yuanyuan & Chi, Yuanying & Xu, Jin-Hua & Yuan, Yongke, 2022. "Consumers’ attitudes and their effects on electric vehicle sales and charging infrastructure construction: An empirical study in China," Energy Policy, Elsevier, vol. 165(C).
    12. Wang, Zhenpo & Zhang, Dayu & Liu, Peng & Lin, Ni & Zhang, Zhaosheng & She, Chengqi, 2024. "An online inconsistency evaluation and abnormal cell identification method for real-world electric vehicles," Energy, Elsevier, vol. 307(C).
    13. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    14. Wang, Kaijie & Ma, Yuncong & Wei, Fanrong & Lin, Xiangning & Li, Zhengtian & Dawoud, Samir Mohammed, 2025. "Resilient market bidding strategy for Mobile energy storage system considering transfer uncertainty," Applied Energy, Elsevier, vol. 377(PC).
    15. Nagel, Niels Oliver & Jåstad, Eirik Ogner & Martinsen, Thomas, 2024. "The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home- and public parking potentials," Energy, Elsevier, vol. 293(C).
    16. Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
    17. Lefeng, Shi & Shengnan, Lv & Chunxiu, Liu & Yue, Zhou & Cipcigan, Liana & Acker, Thomas L., 2020. "A framework for electric vehicle power supply chain development," Utilities Policy, Elsevier, vol. 64(C).
    18. Feng, Jie & Ran, Lun & Wang, Zhiyuan & Zhang, Mengling, 2024. "Optimal energy scheduling of virtual power plant integrating electric vehicles and energy storage systems under uncertainty," Energy, Elsevier, vol. 309(C).
    19. Kuang, Yanqing & Chen, Yang & Hu, Mengqi & Yang, Dong, 2017. "Influence analysis of driver behavior and building category on economic performance of electric vehicle to grid and building integration," Applied Energy, Elsevier, vol. 207(C), pages 427-437.
    20. Sung-Min Cho & Jin-Su Kim & Jae-Chul Kim, 2019. "Optimal Operation Parameter Estimation of Energy Storage for Frequency Regulation," Energies, MDPI, vol. 12(9), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:311:y:2024:i:c:s0360544224030937. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.