Short-term electric vehicle charging demand prediction: A deep learning approach
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2023.121032
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Szoplik, Jolanta, 2015. "Forecasting of natural gas consumption with artificial neural networks," Energy, Elsevier, vol. 85(C), pages 208-220.
- Peng, Lu & Liu, Shan & Liu, Rui & Wang, Lin, 2018. "Effective long short-term memory with differential evolution algorithm for electricity price prediction," Energy, Elsevier, vol. 162(C), pages 1301-1314.
- Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
- Yiqi Lu & Yongpan Li & Da Xie & Enwei Wei & Xianlu Bao & Huafeng Chen & Xiancheng Zhong, 2018. "The Application of Improved Random Forest Algorithm on the Prediction of Electric Vehicle Charging Load," Energies, MDPI, vol. 11(11), pages 1-16, November.
- Cui, Dingsong & Wang, Zhenpo & Liu, Peng & Wang, Shuo & Zhang, Zhaosheng & Dorrell, David G. & Li, Xiaohui, 2022. "Battery electric vehicle usage pattern analysis driven by massive real-world data," Energy, Elsevier, vol. 250(C).
- Zhuge, Chengxiang & Wei, Binru & Shao, Chunfu & Shan, Yuli & Dong, Chunjiao, 2020. "The role of the license plate lottery policy in the adoption of Electric Vehicles: A case study of Beijing," Energy Policy, Elsevier, vol. 139(C).
- Wolbertus, Rick & Kroesen, Maarten & van den Hoed, Robert & Chorus, Caspar, 2018. "Fully charged: An empirical study into the factors that influence connection times at EV-charging stations," Energy Policy, Elsevier, vol. 123(C), pages 1-7.
- Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
- Yuan, Chaoqing & Liu, Sifeng & Fang, Zhigeng, 2016. "Comparison of China's primary energy consumption forecasting by using ARIMA (the autoregressive integrated moving average) model and GM(1,1) model," Energy, Elsevier, vol. 100(C), pages 384-390.
- Yang, Xiong & Zhuge, Chengxiang & Shao, Chunfu & Huang, Yuantan & Hayse Chiwing G. Tang, Justin & Sun, Mingdong & Wang, Pinxi & Wang, Shiqi, 2022. "Characterizing mobility patterns of private electric vehicle users with trajectory data," Applied Energy, Elsevier, vol. 321(C).
- Huiting Zheng & Jiabin Yuan & Long Chen, 2017. "Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation," Energies, MDPI, vol. 10(8), pages 1-20, August.
- Jakov Topić & Branimir Škugor & Joško Deur, 2019. "Neural Network-Based Modeling of Electric Vehicle Energy Demand and All Electric Range," Energies, MDPI, vol. 12(7), pages 1-20, April.
- Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
- Powell, Siobhan & Cezar, Gustavo Vianna & Rajagopal, Ram, 2022. "Scalable probabilistic estimates of electric vehicle charging given observed driver behavior," Applied Energy, Elsevier, vol. 309(C).
- Juncheng Zhu & Zhile Yang & Monjur Mourshed & Yuanjun Guo & Yimin Zhou & Yan Chang & Yanjie Wei & Shengzhong Feng, 2019. "Electric Vehicle Charging Load Forecasting: A Comparative Study of Deep Learning Approaches," Energies, MDPI, vol. 12(14), pages 1-19, July.
- Michael Hardinghaus & Christian Seidel & John E. Anderson, 2019. "Estimating Public Charging Demand of Electric Vehicles," Sustainability, MDPI, vol. 11(21), pages 1-22, October.
- Leticia Monje & Ramón A. Carrasco & Carlos Rosado & Manuel Sánchez-Montañés, 2022. "Deep Learning XAI for Bus Passenger Forecasting: A Use Case in Spain," Mathematics, MDPI, vol. 10(9), pages 1-20, April.
- Wang, Jian Qi & Du, Yu & Wang, Jing, 2020. "LSTM based long-term energy consumption prediction with periodicity," Energy, Elsevier, vol. 197(C).
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2019. "Single and Multi-Sequence Deep Learning Models for Short and Medium Term Electric Load Forecasting," Energies, MDPI, vol. 12(1), pages 1-21, January.
- Majidpour, Mostafa & Qiu, Charlie & Chu, Peter & Pota, Hemanshu R. & Gadh, Rajit, 2016. "Forecasting the EV charging load based on customer profile or station measurement?," Applied Energy, Elsevier, vol. 163(C), pages 134-141.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jun Zhang & Huiluan Cong & Hui Zhou & Zhiqiang Wang & Ziyi Wen & Xian Zhang, 2024. "Electric Vehicle Charging Load Prediction Based on Weight Fusion Spatial–Temporal Graph Convolutional Network," Energies, MDPI, vol. 17(19), pages 1-17, September.
- Siow Jat Shern & Md Tanjil Sarker & Mohammed Hussein Saleh Mohammed Haram & Gobbi Ramasamy & Siva Priya Thiagarajah & Fahmid Al Farid, 2024. "Artificial Intelligence Optimization for User Prediction and Efficient Energy Distribution in Electric Vehicle Smart Charging Systems," Energies, MDPI, vol. 17(22), pages 1-25, November.
- Tian, Chenlu & Liu, Yechun & Zhang, Guiqing & Yang, Yalong & Yan, Yi & Li, Chengdong, 2024. "Transfer learning based hybrid model for power demand prediction of large-scale electric vehicles," Energy, Elsevier, vol. 300(C).
- Zhang, Lei & Huang, Zhijia & Wang, Zhenpo & Li, Xiaohui & Sun, Fengchun, 2024. "An urban charging load forecasting model based on trip chain model for private passenger electric vehicles: A case study in Beijing," Energy, Elsevier, vol. 299(C).
- Kuang, Haoxuan & Qu, Haohao & Deng, Kunxiang & Li, Jun, 2024. "A physics-informed graph learning approach for citywide electric vehicle charging demand prediction and pricing," Applied Energy, Elsevier, vol. 363(C).
- Feng, Zhanyu & Zhang, Jian & Jiang, Han & Yao, Xuejian & Qian, Yu & Zhang, Haiyan, 2024. "Energy consumption prediction strategy for electric vehicle based on LSTM-transformer framework," Energy, Elsevier, vol. 302(C).
- Cao, Jianing & Han, Yuhang & Pan, Nan & Zhang, Jingcheng & Yang, Junwei, 2024. "A data-driven approach to urban charging facility expansion based on bi-level optimization: A case study in a Chinese city," Energy, Elsevier, vol. 300(C).
- Cao, Tingwei & Xu, Yinliang & Liu, Guowei & Tao, Shengyu & Tang, Wenjun & Sun, Hongbin, 2024. "Feature-enhanced deep learning method for electric vehicle charging demand probabilistic forecasting of charging station," Applied Energy, Elsevier, vol. 371(C).
- Wang, Zhaoqi & Zhang, Lu & Tang, Wei & Ma, Ziyao & Huang, Jiajin, 2024. "Equilibrium configuration strategy of vehicle-to-grid-based electric vehicle charging stations in low-carbon resilient distribution networks," Applied Energy, Elsevier, vol. 361(C).
- Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
- Karla Schröder & Gonzalo Farias & Sebastián Dormido-Canto & Ernesto Fabregas, 2024. "Comparative Analysis of Deep Learning Methods for Fault Avoidance and Predicting Demand in Electrical Distribution," Energies, MDPI, vol. 17(11), pages 1-13, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.
- Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
- Hu, Huanling & Wang, Lin & Lv, Sheng-Xiang, 2020. "Forecasting energy consumption and wind power generation using deep echo state network," Renewable Energy, Elsevier, vol. 154(C), pages 598-613.
- Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
- Yunsun Kim & Sahm Kim, 2021. "Forecasting Charging Demand of Electric Vehicles Using Time-Series Models," Energies, MDPI, vol. 14(5), pages 1-16, March.
- Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
- Cao, Tingwei & Xu, Yinliang & Liu, Guowei & Tao, Shengyu & Tang, Wenjun & Sun, Hongbin, 2024. "Feature-enhanced deep learning method for electric vehicle charging demand probabilistic forecasting of charging station," Applied Energy, Elsevier, vol. 371(C).
- Munseok Chang & Sungwoo Bae & Gilhwan Cha & Jaehyun Yoo, 2021. "Aggregated Electric Vehicle Fast-Charging Power Demand Analysis and Forecast Based on LSTM Neural Network," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
- Golsefidi, Atefeh Hemmati & Hüttel, Frederik Boe & Peled, Inon & Samaranayake, Samitha & Pereira, Francisco Câmara, 2023. "A joint machine learning and optimization approach for incremental expansion of electric vehicle charging infrastructure," Transportation Research Part A: Policy and Practice, Elsevier, vol. 178(C).
- Jiaan Zhang & Chenyu Liu & Leijiao Ge, 2022. "Short-Term Load Forecasting Model of Electric Vehicle Charging Load Based on MCCNN-TCN," Energies, MDPI, vol. 15(7), pages 1-25, April.
- Wei, Nan & Li, Changjun & Peng, Xiaolong & Li, Yang & Zeng, Fanhua, 2019. "Daily natural gas consumption forecasting via the application of a novel hybrid model," Applied Energy, Elsevier, vol. 250(C), pages 358-368.
- Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
- Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
- Wulfran Fendzi Mbasso & Reagan Jean Jacques Molu & Serge Raoul Dzonde Naoussi & Saatong Kenfack, 2022. "Demand-Supply Forecasting based on Deep Learning for Electricity Balance in Cameroon," International Journal of Energy Economics and Policy, Econjournals, vol. 12(4), pages 99-103, July.
- Wang, Qiang & Jiang, Feng, 2019. "Integrating linear and nonlinear forecasting techniques based on grey theory and artificial intelligence to forecast shale gas monthly production in Pennsylvania and Texas of the United States," Energy, Elsevier, vol. 178(C), pages 781-803.
- Yang, Xiong & Peng, Zhenhan & Wang, Pinxi & Zhuge, Chengxiang, 2023. "Seasonal variance in electric vehicle charging demand and its impacts on infrastructure deployment: A big data approach," Energy, Elsevier, vol. 280(C).
- Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
- Su, Huai & Zio, Enrico & Zhang, Jinjun & Xu, Mingjing & Li, Xueyi & Zhang, Zongjie, 2019. "A hybrid hourly natural gas demand forecasting method based on the integration of wavelet transform and enhanced Deep-RNN model," Energy, Elsevier, vol. 178(C), pages 585-597.
- Ma, Tai-Yu & Faye, Sébastien, 2022. "Multistep electric vehicle charging station occupancy prediction using hybrid LSTM neural networks," Energy, Elsevier, vol. 244(PB).
- Feng, Jian & Yao, Yifan & Liu, Zhenfeng & Liu, Zhenling, 2024. "Electric vehicle charging stations' installing strategies: Considering government subsidies," Applied Energy, Elsevier, vol. 370(C).
More about this item
Keywords
Electric vehicle; Charging demand prediction; Long short-term memory neural network; Trajectory data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:340:y:2023:i:c:s0306261923003963. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.