IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v310y2022ics0306261921016810.html
   My bibliography  Save this article

An Edge Computing-oriented Net Power Forecasting for PV-assisted Charging Station: Model Complexity and Forecasting Accuracy Trade-off

Author

Listed:
  • Shi, Jiaqi
  • Liu, Nian
  • Huang, Yujing
  • Ma, Liya

Abstract

The PV-assisted charging station (PVCS) aggregates the two key resources of electric vehicle (EV) charging load and photovoltaic (PV) system to maximize operation profit. In order to quantify the PVCS impact to grid and the renewable energy utilization by EV charging load, it is crucial to predict the PVCS net power and capture the most correlated factors for power variation. Given that the PVCS is located near the user side, the forecasting model complexity must be restricted to meet the online training demands on edge computing, apart from ensuring the prediction accuracy. A PVCS net power forecasting approach is proposed by simplifying model complexity from the entire cycle of training process, including the input data pruning, lightweight model training and hyperparameter optimization. Finally, a comprehensive analysis of the real data in PVCS shows that the most sensitivity factors affecting the net power of PVCS is time of use price, and the deep auto-encoded extreme learning machine (DA-ELM) can make a satisfactory compromise between prediction accuracy and model complexity for edge computing utilization. The forecasting model has outstanding prediction performance on Raspberry pi-based edge platform, which has enough significance for PVCS promotion.

Suggested Citation

  • Shi, Jiaqi & Liu, Nian & Huang, Yujing & Ma, Liya, 2022. "An Edge Computing-oriented Net Power Forecasting for PV-assisted Charging Station: Model Complexity and Forecasting Accuracy Trade-off," Applied Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261921016810
    DOI: 10.1016/j.apenergy.2021.118456
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921016810
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118456?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Munkhammar, Joakim & Widén, Joakim & Rydén, Jesper, 2015. "On a probability distribution model combining household power consumption, electric vehicle home-charging and photovoltaic power production," Applied Energy, Elsevier, vol. 142(C), pages 135-143.
    2. Chandra Mouli, G.R. & Bauer, P. & Zeman, M., 2016. "System design for a solar powered electric vehicle charging station for workplaces," Applied Energy, Elsevier, vol. 168(C), pages 434-443.
    3. Xydas, Erotokritos & Marmaras, Charalampos & Cipcigan, Liana M. & Jenkins, Nick & Carroll, Steve & Barker, Myles, 2016. "A data-driven approach for characterising the charging demand of electric vehicles: A UK case study," Applied Energy, Elsevier, vol. 162(C), pages 763-771.
    4. Hafeez, Ghulam & Alimgeer, Khurram Saleem & Khan, Imran, 2020. "Electric load forecasting based on deep learning and optimized by heuristic algorithm in smart grid," Applied Energy, Elsevier, vol. 269(C).
    5. Fathabadi, Hassan, 2020. "Novel stand-alone, completely autonomous and renewable energy based charging station for charging plug-in hybrid electric vehicles (PHEVs)," Applied Energy, Elsevier, vol. 260(C).
    6. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    7. Kaur, Amanpreet & Nonnenmacher, Lukas & Coimbra, Carlos F.M., 2016. "Net load forecasting for high renewable energy penetration grids," Energy, Elsevier, vol. 114(C), pages 1073-1084.
    8. Chung, Yu-Wei & Khaki, Behnam & Li, Tianyi & Chu, Chicheng & Gadh, Rajit, 2019. "Ensemble machine learning-based algorithm for electric vehicle user behavior prediction," Applied Energy, Elsevier, vol. 254(C).
    9. Majidpour, Mostafa & Qiu, Charlie & Chu, Peter & Pota, Hemanshu R. & Gadh, Rajit, 2016. "Forecasting the EV charging load based on customer profile or station measurement?," Applied Energy, Elsevier, vol. 163(C), pages 134-141.
    10. Liu, Nian & Tang, Qingfeng & Zhang, Jianhua & Fan, Wei & Liu, Jie, 2014. "A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids," Applied Energy, Elsevier, vol. 129(C), pages 336-345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adam Krechowicz & Maria Krechowicz & Katarzyna Poczeta, 2022. "Machine Learning Approaches to Predict Electricity Production from Renewable Energy Sources," Energies, MDPI, vol. 15(23), pages 1-41, December.
    2. Shi, Jiaqi & Li, Chenxi & Yan, Xiaohe, 2023. "Artificial intelligence for load forecasting: A stacking learning approach based on ensemble diversity regularization," Energy, Elsevier, vol. 262(PB).
    3. Jaikumar Shanmuganathan & Aruldoss Albert Victoire & Gobu Balraj & Amalraj Victoire, 2022. "Deep Learning LSTM Recurrent Neural Network Model for Prediction of Electric Vehicle Charging Demand," Sustainability, MDPI, vol. 14(16), pages 1-28, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shepero, Mahmoud & Munkhammar, Joakim & Widén, Joakim & Bishop, Justin D.K. & Boström, Tobias, 2018. "Modeling of photovoltaic power generation and electric vehicles charging on city-scale: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 61-71.
    2. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    3. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    4. Zhouquan Wu & Pradeep Krishna Bhat & Bo Chen, 2023. "Optimal Configuration of Extreme Fast Charging Stations Integrated with Energy Storage System and Photovoltaic Panels in Distribution Networks," Energies, MDPI, vol. 16(5), pages 1-20, March.
    5. Fanidhar Dewangan & Almoataz Y. Abdelaziz & Monalisa Biswal, 2023. "Load Forecasting Models in Smart Grid Using Smart Meter Information: A Review," Energies, MDPI, vol. 16(3), pages 1-55, January.
    6. Yvenn Amara-Ouali & Yannig Goude & Pascal Massart & Jean-Michel Poggi & Hui Yan, 2021. "A Review of Electric Vehicle Load Open Data and Models," Energies, MDPI, vol. 14(8), pages 1-35, April.
    7. Hernández, J.C. & Ruiz-Rodriguez, F.J. & Jurado, F., 2017. "Modelling and assessment of the combined technical impact of electric vehicles and photovoltaic generation in radial distribution systems," Energy, Elsevier, vol. 141(C), pages 316-332.
    8. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    9. Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
    10. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    11. Lixing Chen & Xueliang Huang & Hong Zhang, 2020. "Modeling the Charging Behaviors for Electric Vehicles Based on Ternary Symmetric Kernel Density Estimation," Energies, MDPI, vol. 13(7), pages 1-17, March.
    12. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    13. Rosato, Antonello & Panella, Massimo & Andreotti, Amedeo & Mohammed, Osama A. & Araneo, Rodolfo, 2021. "Two-stage dynamic management in energy communities using a decision system based on elastic net regularization," Applied Energy, Elsevier, vol. 291(C).
    14. Cao, Tingwei & Xu, Yinliang & Liu, Guowei & Tao, Shengyu & Tang, Wenjun & Sun, Hongbin, 2024. "Feature-enhanced deep learning method for electric vehicle charging demand probabilistic forecasting of charging station," Applied Energy, Elsevier, vol. 371(C).
    15. Ghulam Hafeez & Khurram Saleem Alimgeer & Zahid Wadud & Zeeshan Shafiq & Mohammad Usman Ali Khan & Imran Khan & Farrukh Aslam Khan & Abdelouahid Derhab, 2020. "A Novel Accurate and Fast Converging Deep Learning-Based Model for Electrical Energy Consumption Forecasting in a Smart Grid," Energies, MDPI, vol. 13(9), pages 1-25, May.
    16. Feng, Jian & Yao, Yifan & Liu, Zhenfeng & Liu, Zhenling, 2024. "Electric vehicle charging stations' installing strategies: Considering government subsidies," Applied Energy, Elsevier, vol. 370(C).
    17. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    18. Shubham Mishra & Shrey Verma & Subhankar Chowdhury & Ambar Gaur & Subhashree Mohapatra & Gaurav Dwivedi & Puneet Verma, 2021. "A Comprehensive Review on Developments in Electric Vehicle Charging Station Infrastructure and Present Scenario of India," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    19. Mu Li & Yingqi Liu & Weizhong Yue, 2022. "Evolutionary Game of Actors in China’s Electric Vehicle Charging Infrastructure Industry," Energies, MDPI, vol. 15(23), pages 1-20, November.
    20. Arias, Mariz B. & Kim, Myungchin & Bae, Sungwoo, 2017. "Prediction of electric vehicle charging-power demand in realistic urban traffic networks," Applied Energy, Elsevier, vol. 195(C), pages 738-753.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:310:y:2022:i:c:s0306261921016810. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.