IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v307y2022ics030626192101494x.html
   My bibliography  Save this article

Forecasting of short-term lighting and plug load electricity consumption in single residential units: Development and assessment of data-driven models for different horizons

Author

Listed:
  • Maltais, Louis-Gabriel
  • Gosselin, Louis

Abstract

Improving the management of electricity resources in residential buildings using intelligent control and energy scheduling requires sub-hourly and hourly predictions of the electricity consumption. However, literature currently provides little evidence and guidelines on the possibility to predict short-term non-HVAC electrical loads in single residential units. In this work, we compare data-driven forecasting models of increasing complexity for predicting lighting and plug load electricity demand in a dwelling over horizons ranging from 10 min to 24 h. Five data-driven approaches are analyzed: (i) persistence forecast, (ii) linear regression, (iii) Apriori algorithm, (iv) gradient boosted regression trees and (v) neural network. Data monitored in eight dwellings located in Quebec City (Canada) are used to train and test the models. For each horizon and for each dwelling, we selected the inputs required to make the best prediction based on Pearson correlation coefficients and we then optimized the hyperparameters of each data-driven method. Overall, the gradient boosted regression trees model yielded the best performance, but was followed closely by some of the other techniques depending on the residential unit and time horizon. With this prediction technique, we found root-mean square errors normalized by average consumption typically ranging from 20 to 100%, respectively for 24-hour and 10-minute horizons. The main contribution of this work is the assessment of the level of predictability and methods to forecast electrical loads of individual dwellings, over many horizons, and excluding space heating and domestic hot water production.

Suggested Citation

  • Maltais, Louis-Gabriel & Gosselin, Louis, 2022. "Forecasting of short-term lighting and plug load electricity consumption in single residential units: Development and assessment of data-driven models for different horizons," Applied Energy, Elsevier, vol. 307(C).
  • Handle: RePEc:eee:appene:v:307:y:2022:i:c:s030626192101494x
    DOI: 10.1016/j.apenergy.2021.118229
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030626192101494X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118229?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kazmi, H. & D’Oca, S. & Delmastro, C. & Lodeweyckx, S. & Corgnati, S.P., 2016. "Generalizable occupant-driven optimization model for domestic hot water production in NZEB," Applied Energy, Elsevier, vol. 175(C), pages 1-15.
    2. Reynolds, Jonathan & Rezgui, Yacine & Kwan, Alan & Piriou, Solène, 2018. "A zone-level, building energy optimisation combining an artificial neural network, a genetic algorithm, and model predictive control," Energy, Elsevier, vol. 151(C), pages 729-739.
    3. Fan, Cheng & Xiao, Fu & Wang, Shengwei, 2014. "Development of prediction models for next-day building energy consumption and peak power demand using data mining techniques," Applied Energy, Elsevier, vol. 127(C), pages 1-10.
    4. Fischer, David & Bernhardt, Josef & Madani, Hatef & Wittwer, Christof, 2017. "Comparison of control approaches for variable speed air source heat pumps considering time variable electricity prices and PV," Applied Energy, Elsevier, vol. 204(C), pages 93-105.
    5. Ferracuti, Francesco & Fonti, Alessandro & Ciabattoni, Lucio & Pizzuti, Stefano & Arteconi, Alessia & Helsen, Lieve & Comodi, Gabriele, 2017. "Data-driven models for short-term thermal behaviour prediction in real buildings," Applied Energy, Elsevier, vol. 204(C), pages 1375-1387.
    6. Zhao, Hai-xiang & Magoulès, Frédéric, 2012. "A review on the prediction of building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3586-3592.
    7. Rouleau, Jean & Gosselin, Louis & Blanchet, Pierre, 2018. "Understanding energy consumption in high-performance social housing buildings: A case study from Canada," Energy, Elsevier, vol. 145(C), pages 677-690.
    8. Chengdong Li & Zixiang Ding & Jianqiang Yi & Yisheng Lv & Guiqing Zhang, 2018. "Deep Belief Network Based Hybrid Model for Building Energy Consumption Prediction," Energies, MDPI, vol. 11(1), pages 1-26, January.
    9. Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
    10. Yuansheng Huang & Lei Yang & Chong Gao & Yuqing Jiang & Yulin Dong, 2019. "A Novel Prediction Approach for Short-Term Renewable Energy Consumption in China Based on Improved Gaussian Process Regression," Energies, MDPI, vol. 12(21), pages 1-17, November.
    11. Rahman, Aowabin & Srikumar, Vivek & Smith, Amanda D., 2018. "Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks," Applied Energy, Elsevier, vol. 212(C), pages 372-385.
    12. Amasyali, Kadir & El-Gohary, Nora M., 2018. "A review of data-driven building energy consumption prediction studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1192-1205.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chengyu & Ma, Liangdong & Luo, Zhiwen & Han, Xing & Zhao, Tianyi, 2024. "Forecasting building plug load electricity consumption employing occupant-building interaction input features and bidirectional LSTM with improved swarm intelligent algorithms," Energy, Elsevier, vol. 288(C).
    2. Nikseresht, Ali & Amindavar, Hamidreza, 2024. "Energy demand forecasting using adaptive ARFIMA based on a novel dynamic structural break detection framework," Applied Energy, Elsevier, vol. 353(PA).
    3. Botman, Lola & Lago, Jesus & Fu, Xiaohan & Chia, Keaton & Wolf, Jesse & Kleissl, Jan & De Moor, Bart, 2024. "Building plug load mode detection, forecasting and scheduling," Applied Energy, Elsevier, vol. 364(C).
    4. Zhang, Chengyu & Luo, Zhiwen & Rezgui, Yacine & Zhao, Tianyi, 2024. "Enhancing building energy consumption prediction introducing novel occupant behavior models with sparrow search optimization and attention mechanisms: A case study for forty-five buildings in a univer," Energy, Elsevier, vol. 294(C).
    5. Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
    6. Aristeidis Mystakidis & Paraskevas Koukaras & Nikolaos Tsalikidis & Dimosthenis Ioannidis & Christos Tjortjis, 2024. "Energy Forecasting: A Comprehensive Review of Techniques and Technologies," Energies, MDPI, vol. 17(7), pages 1-33, March.
    7. Paraskevas Koukaras & Akeem Mustapha & Aristeidis Mystakidis & Christos Tjortjis, 2024. "Optimizing Building Short-Term Load Forecasting: A Comparative Analysis of Machine Learning Models," Energies, MDPI, vol. 17(6), pages 1-26, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunil Kumar Mohapatra & Sushruta Mishra & Hrudaya Kumar Tripathy & Akash Kumar Bhoi & Paolo Barsocchi, 2021. "A Pragmatic Investigation of Energy Consumption and Utilization Models in the Urban Sector Using Predictive Intelligence Approaches," Energies, MDPI, vol. 14(13), pages 1-28, June.
    2. Razak Olu-Ajayi & Hafiz Alaka & Hakeem Owolabi & Lukman Akanbi & Sikiru Ganiyu, 2023. "Data-Driven Tools for Building Energy Consumption Prediction: A Review," Energies, MDPI, vol. 16(6), pages 1-20, March.
    3. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    4. Wang, Zeyu & Liu, Jian & Zhang, Yuanxin & Yuan, Hongping & Zhang, Ruixue & Srinivasan, Ravi S., 2021. "Practical issues in implementing machine-learning models for building energy efficiency: Moving beyond obstacles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    5. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).
    6. Deb, Chirag & Dai, Zhonghao & Schlueter, Arno, 2021. "A machine learning-based framework for cost-optimal building retrofit," Applied Energy, Elsevier, vol. 294(C).
    7. Zhang, Liang & Wen, Jin & Li, Yanfei & Chen, Jianli & Ye, Yunyang & Fu, Yangyang & Livingood, William, 2021. "A review of machine learning in building load prediction," Applied Energy, Elsevier, vol. 285(C).
    8. Kasım Zor & Özgür Çelik & Oğuzhan Timur & Ahmet Teke, 2020. "Short-Term Building Electrical Energy Consumption Forecasting by Employing Gene Expression Programming and GMDH Networks," Energies, MDPI, vol. 13(5), pages 1-24, March.
    9. Tran, Duc-Hoc & Luong, Duc-Long & Chou, Jui-Sheng, 2020. "Nature-inspired metaheuristic ensemble model for forecasting energy consumption in residential buildings," Energy, Elsevier, vol. 191(C).
    10. Fan, Cheng & Sun, Yongjun & Xiao, Fu & Ma, Jie & Lee, Dasheng & Wang, Jiayuan & Tseng, Yen Chieh, 2020. "Statistical investigations of transfer learning-based methodology for short-term building energy predictions," Applied Energy, Elsevier, vol. 262(C).
    11. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    12. Wang, Ran & Lu, Shilei & Feng, Wei, 2020. "A novel improved model for building energy consumption prediction based on model integration," Applied Energy, Elsevier, vol. 262(C).
    13. Jiang, Ben & Li, Yu & Rezgui, Yacine & Zhang, Chengyu & Wang, Peng & Zhao, Tianyi, 2024. "Multi-source domain generalization deep neural network model for predicting energy consumption in multiple office buildings," Energy, Elsevier, vol. 299(C).
    14. Fan, Cheng & Xiao, Fu & Yan, Chengchu & Liu, Chengliang & Li, Zhengdao & Wang, Jiayuan, 2019. "A novel methodology to explain and evaluate data-driven building energy performance models based on interpretable machine learning," Applied Energy, Elsevier, vol. 235(C), pages 1551-1560.
    15. Anand Krishnan Prakash & Susu Xu & Ram Rajagopal & Hae Young Noh, 2018. "Robust Building Energy Load Forecasting Using Physically-Based Kernel Models," Energies, MDPI, vol. 11(4), pages 1-21, April.
    16. Cui, Borui & Fan, Cheng & Munk, Jeffrey & Mao, Ning & Xiao, Fu & Dong, Jin & Kuruganti, Teja, 2019. "A hybrid building thermal modeling approach for predicting temperatures in typical, detached, two-story houses," Applied Energy, Elsevier, vol. 236(C), pages 101-116.
    17. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    18. Lara Ramadan & Isam Shahrour & Hussein Mroueh & Fadi Hage Chehade, 2021. "Use of Machine Learning Methods for Indoor Temperature Forecasting," Future Internet, MDPI, vol. 13(10), pages 1-18, September.
    19. Gao, Lei & Liu, Tianyuan & Cao, Tao & Hwang, Yunho & Radermacher, Reinhard, 2021. "Comparing deep learning models for multi energy vectors prediction on multiple types of building," Applied Energy, Elsevier, vol. 301(C).
    20. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2022. "An ensemble learning-based framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 315(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:307:y:2022:i:c:s030626192101494x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.