IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1577-d515802.html
   My bibliography  Save this article

Modelling Stochastic Electricity Demand of Electric Vehicles Based on Traffic Surveys—The Case of Austria

Author

Listed:
  • Albert Hiesl

    (Energy Economics Group (EEG), Institute of Energy Systems and Electrical Drives, TU Wien, Gusshausstrasse 25-29/370-3, A-1040 Vienna, Austria)

  • Jasmine Ramsebner

    (Energy Economics Group (EEG), Institute of Energy Systems and Electrical Drives, TU Wien, Gusshausstrasse 25-29/370-3, A-1040 Vienna, Austria)

  • Reinhard Haas

    (Energy Economics Group (EEG), Institute of Energy Systems and Electrical Drives, TU Wien, Gusshausstrasse 25-29/370-3, A-1040 Vienna, Austria)

Abstract

Battery-powered electric mobility is currently the most promising technology for the decarbonisation of the transport sector, alongside hydrogen-powered vehicles, provided that the electricity used comes 100% from renewable energy sources. To estimate its electricity demand both nationwide and in individual smaller communities, a calculation based assessment on driving profiles that are as realistic as possible is required. The developed model based analysis presented in this paper for the creation of driving and thus electricity load profiles makes it possible to build different compositions of driving profiles. The focus of this paper lies in the analysis of motorised private transport, which makes it possible to assess future charging and load control potentials in a subsequent analysis. We outline the differences in demand and driving profiles for weekdays as well as for Saturdays, Sundays and holidays in general. Furthermore, the modelling considers the length distribution of the individual trips per trip purpose and different start times. The developed method allows to create individual driving and electric vehicle (EV) demand profiles as well as averaged driving profiles, which can then be scaled up and analysed for an entire country.

Suggested Citation

  • Albert Hiesl & Jasmine Ramsebner & Reinhard Haas, 2021. "Modelling Stochastic Electricity Demand of Electric Vehicles Based on Traffic Surveys—The Case of Austria," Energies, MDPI, vol. 14(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1577-:d:515802
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1577/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1577/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ferro, G. & Minciardi, R. & Robba, M., 2020. "A user equilibrium model for electric vehicles: Joint traffic and energy demand assignment," Energy, Elsevier, vol. 198(C).
    2. Jasmine Ramsebner & Albert Hiesl & Reinhard Haas, 2020. "Efficient Load Management for BEV Charging Infrastructure in Multi-Apartment Buildings," Energies, MDPI, vol. 13(22), pages 1-23, November.
    3. Querini, Florent & Benetto, Enrico, 2014. "Agent-based modelling for assessing hybrid and electric cars deployment policies in Luxembourg and Lorraine," Transportation Research Part A: Policy and Practice, Elsevier, vol. 70(C), pages 149-161.
    4. Zhang, Cheng & Yang, Fan & Ke, Xinyou & Liu, Zhifeng & Yuan, Chris, 2019. "Predictive modeling of energy consumption and greenhouse gas emissions from autonomous electric vehicle operations," Applied Energy, Elsevier, vol. 254(C).
    5. Fischer, David & Harbrecht, Alexander & Surmann, Arne & McKenna, Russell, 2019. "Electric vehicles’ impacts on residential electric local profiles – A stochastic modelling approach considering socio-economic, behavioural and spatial factors," Applied Energy, Elsevier, vol. 233, pages 644-658.
    6. Daina, Nicolò & Sivakumar, Aruna & Polak, John W., 2017. "Modelling electric vehicles use: a survey on the methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 447-460.
    7. Harris, Chioke B. & Webber, Michael E., 2014. "An empirically-validated methodology to simulate electricity demand for electric vehicle charging," Applied Energy, Elsevier, vol. 126(C), pages 172-181.
    8. Zheng, Yanchong & Yu, Hang & Shao, Ziyun & Jian, Linni, 2020. "Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets," Applied Energy, Elsevier, vol. 280(C).
    9. Schwarz, Marius & Auzépy, Quentin & Knoeri, Christof, 2020. "Can electricity pricing leverage electric vehicles and battery storage to integrate high shares of solar photovoltaics?," Applied Energy, Elsevier, vol. 277(C).
    10. Pareschi, Giacomo & Küng, Lukas & Georges, Gil & Boulouchos, Konstantinos, 2020. "Are travel surveys a good basis for EV models? Validation of simulated charging profiles against empirical data," Applied Energy, Elsevier, vol. 275(C).
    11. Arias, Mariz B. & Bae, Sungwoo, 2016. "Electric vehicle charging demand forecasting model based on big data technologies," Applied Energy, Elsevier, vol. 183(C), pages 327-339.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ana Carolina Kulik & Édwin Augusto Tonolo & Alberto Kisner Scortegagna & Jardel Eugênio da Silva & Jair Urbanetz Junior, 2021. "Analysis of Scenarios for the Insertion of Electric Vehicles in Conjunction with a Solar Carport in the City of Curitiba, Paraná—Brazil," Energies, MDPI, vol. 14(16), pages 1-15, August.
    2. Evgenia Kapassa & Marinos Themistocleous & Klitos Christodoulou & Elias Iosif, 2021. "Blockchain Application in Internet of Vehicles: Challenges, Contributions and Current Limitations," Future Internet, MDPI, vol. 13(12), pages 1-32, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Naveed Iqbal & Lauri Kütt & Matti Lehtonen & Robert John Millar & Verner Püvi & Anton Rassõlkin & Galina L. Demidova, 2021. "Travel Activity Based Stochastic Modelling of Load and Charging State of Electric Vehicles," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
    2. Yan, Jie & Zhang, Jing & Liu, Yongqian & Lv, Guoliang & Han, Shuang & Alfonzo, Ian Emmanuel Gonzalez, 2020. "EV charging load simulation and forecasting considering traffic jam and weather to support the integration of renewables and EVs," Renewable Energy, Elsevier, vol. 159(C), pages 623-641.
    3. Li, Xiaohui & Wang, Zhenpo & Zhang, Lei & Sun, Fengchun & Cui, Dingsong & Hecht, Christopher & Figgener, Jan & Sauer, Dirk Uwe, 2023. "Electric vehicle behavior modeling and applications in vehicle-grid integration: An overview," Energy, Elsevier, vol. 268(C).
    4. Einolander, Johannes & Lahdelma, Risto, 2022. "Explicit demand response potential in electric vehicle charging networks: Event-based simulation based on the multivariate copula procedure," Energy, Elsevier, vol. 256(C).
    5. Graham Town & Seyedfoad Taghizadeh & Sara Deilami, 2022. "Review of Fast Charging for Electrified Transport: Demand, Technology, Systems, and Planning," Energies, MDPI, vol. 15(4), pages 1-30, February.
    6. Zhang, Jing & Yan, Jie & Liu, Yongqian & Zhang, Haoran & Lv, Guoliang, 2020. "Daily electric vehicle charging load profiles considering demographics of vehicle users," Applied Energy, Elsevier, vol. 274(C).
    7. Hipolito, F. & Vandet, C.A. & Rich, J., 2022. "Charging, steady-state SoC and energy storage distributions for EV fleets," Applied Energy, Elsevier, vol. 317(C).
    8. Tu, Wei & Santi, Paolo & Zhao, Tianhong & He, Xiaoyi & Li, Qingquan & Dong, Lei & Wallington, Timothy J. & Ratti, Carlo, 2019. "Acceptability, energy consumption, and costs of electric vehicle for ride-hailing drivers in Beijing," Applied Energy, Elsevier, vol. 250(C), pages 147-160.
    9. Zhang, Tianren & Huang, Yuping & Liao, Hui & Liang, Yu, 2023. "A hybrid electric vehicle load classification and forecasting approach based on GBDT algorithm and temporal convolutional network," Applied Energy, Elsevier, vol. 351(C).
    10. Mikołaj Schmidt & Paweł Zmuda-Trzebiatowski & Marcin Kiciński & Piotr Sawicki & Konrad Lasak, 2021. "Multiple-Criteria-Based Electric Vehicle Charging Infrastructure Design Problem," Energies, MDPI, vol. 14(11), pages 1-34, May.
    11. Zhang, Xiaofeng & Kong, Xiaoying & Yan, Renshi & Liu, Yuting & Xia, Peng & Sun, Xiaoqin & Zeng, Rong & Li, Hongqiang, 2023. "Data-driven cooling, heating and electrical load prediction for building integrated with electric vehicles considering occupant travel behavior," Energy, Elsevier, vol. 264(C).
    12. Lauvergne, Rémi & Perez, Yannick & Françon, Mathilde & Tejeda De La Cruz, Alberto, 2022. "Integration of electric vehicles into transmission grids: A case study on generation adequacy in Europe in 2040," Applied Energy, Elsevier, vol. 326(C).
    13. Huang, Wenxin & Wang, Jianguo & Wang, Jianping & Zeng, Haiyan & Zhou, Mi & Cao, Jinxin, 2024. "EV charging load profile identification and seasonal difference analysis via charging sessions data of charging stations," Energy, Elsevier, vol. 288(C).
    14. Mangipinto, Andrea & Lombardi, Francesco & Sanvito, Francesco Davide & Pavičević, Matija & Quoilin, Sylvain & Colombo, Emanuela, 2022. "Impact of mass-scale deployment of electric vehicles and benefits of smart charging across all European countries," Applied Energy, Elsevier, vol. 312(C).
    15. Krzysztof Zagrajek, 2021. "A Survey Data Approach for Determining the Probability Values of Vehicle-to-Grid Service Provision," Energies, MDPI, vol. 14(21), pages 1-38, November.
    16. Neil Stephen Lopez & Adrian Allana & Jose Bienvenido Manuel Biona, 2021. "Modeling Electric Vehicle Charging Demand with the Effect of Increasing EVSEs: A Discrete Event Simulation-Based Model," Energies, MDPI, vol. 14(13), pages 1-15, June.
    17. Einolander, Johannes & Lahdelma, Risto, 2022. "Multivariate copula procedure for electric vehicle charging event simulation," Energy, Elsevier, vol. 238(PA).
    18. Krzysztof Zagrajek & Józef Paska & Łukasz Sosnowski & Konrad Gobosz & Konrad Wróblewski, 2021. "Framework for the Introduction of Vehicle-to-Grid Technology into the Polish Electricity Market," Energies, MDPI, vol. 14(12), pages 1-30, June.
    19. Wu, Jiabin & Li, Qihang & Bie, Yiming & Zhou, Wei, 2024. "Location-routing optimization problem for electric vehicle charging stations in an uncertain transportation network: An adaptive co-evolutionary clustering algorithm," Energy, Elsevier, vol. 304(C).
    20. Wang, Bin & Wang, Shifeng & Tang, Yuanyuan & Tsang, Chi-Wing & Dai, Jinchuan & Leung, Michael K.H. & Lu, Xiao-Ying, 2019. "Micro/nanostructured MnCo2O4.5 anodes with high reversible capacity and excellent rate capability for next generation lithium-ion batteries," Applied Energy, Elsevier, vol. 252(C), pages 1-1.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1577-:d:515802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.