IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v339y2023ics0306261923003513.html
   My bibliography  Save this article

A comprehensive coupled 0D-ECM to 3D-CFD thermal model for heat pipe assisted-air cooling thermal management system under fast charge and discharge

Author

Listed:
  • Karimi, Danial
  • Behi, Hamidreza
  • Berecibar, Maitane
  • Van Mierlo, Joeri

Abstract

Prediction of electrical and thermal behavior of lithium-ion capacitor (LiC) technology as an asymmetric technology is feasible by designing a precise model. Such a model should mimic the behavior of LiCs in heavy-duty applications where high current rates are applied. The developed model is used to design a management system based on efficient modeling tools, including 0D (zero-dimensional) electro-thermal models and 3D computational fluid dynamics (CFD) thermal models. A validated model is essential for LiCs as they operate at high dynamic current rates. In this article, the 0D second-order equivalent circuit model is developed to extract the electrical parameters of LiCs. Then, the thermal model is developed to be linked to the electrical model to make an electro-thermal platform capable of identifying the electro-thermal parameters. The characterization tests are performed within a wide range of temperatures, from the freezing temperature of −30 °C to the hot temperature of + 60 °C. Such a temperature range has never been carried out before. The validation is performed based on the owned experimental results. The applied current rates are from 0.1 A to 500 A, which shows the work's uniqueness in the field of electro-thermal modeling. Later, the extracted parameters have been set as inputs to the 3D CFD thermal model to design and develop a hybrid thermal management system (TMS) based on air cooling and heat pipes. Such a hybrid TMS maintains the maximum temperature at 24.6 °C when the temperature difference between the hottest and coldest cells is only 0.5 °C.

Suggested Citation

  • Karimi, Danial & Behi, Hamidreza & Berecibar, Maitane & Van Mierlo, Joeri, 2023. "A comprehensive coupled 0D-ECM to 3D-CFD thermal model for heat pipe assisted-air cooling thermal management system under fast charge and discharge," Applied Energy, Elsevier, vol. 339(C).
  • Handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003513
    DOI: 10.1016/j.apenergy.2023.120987
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923003513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.120987?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. de Hoog, Joris & Timmermans, Jean-Marc & Ioan-Stroe, Daniel & Swierczynski, Maciej & Jaguemont, Joris & Goutam, Shovon & Omar, Noshin & Van Mierlo, Joeri & Van Den Bossche, Peter, 2017. "Combined cycling and calendar capacity fade modeling of a Nickel-Manganese-Cobalt Oxide Cell with real-life profile validation," Applied Energy, Elsevier, vol. 200(C), pages 47-61.
    2. Saw, Lip Huat & Ye, Yonghuang & Tay, Andrew A.O. & Chong, Wen Tong & Kuan, Seng How & Yew, Ming Chian, 2016. "Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling," Applied Energy, Elsevier, vol. 177(C), pages 783-792.
    3. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
    4. Theodoros Kalogiannis & Md Sazzad Hosen & Mohsen Akbarzadeh Sokkeh & Shovon Goutam & Joris Jaguemont & Lu Jin & Geng Qiao & Maitane Berecibar & Joeri Van Mierlo, 2019. "Comparative Study on Parameter Identification Methods for Dual-Polarization Lithium-Ion Equivalent Circuit Model," Energies, MDPI, vol. 12(21), pages 1-35, October.
    5. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    6. Danial Karimi & Hamidreza Behi & Mohsen Akbarzadeh & Joeri Van Mierlo & Maitane Berecibar, 2021. "A Novel Air-Cooled Thermal Management Approach towards High-Power Lithium-Ion Capacitor Module for Electric Vehicles," Energies, MDPI, vol. 14(21), pages 1-20, November.
    7. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    8. Khaleghi, Sahar & Hosen, Md Sazzad & Karimi, Danial & Behi, Hamidreza & Beheshti, S. Hamidreza & Van Mierlo, Joeri & Berecibar, Maitane, 2022. "Developing an online data-driven approach for prognostics and health management of lithium-ion batteries," Applied Energy, Elsevier, vol. 308(C).
    9. Caiping Zhang & Jiuchun Jiang & Linjing Zhang & Sijia Liu & Leyi Wang & Poh Chiang Loh, 2016. "A Generalized SOC-OCV Model for Lithium-Ion Batteries and the SOC Estimation for LNMCO Battery," Energies, MDPI, vol. 9(11), pages 1-16, November.
    10. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    11. Kiarash Movassagh & Arif Raihan & Balakumar Balasingam & Krishna Pattipati, 2021. "A Critical Look at Coulomb Counting Approach for State of Charge Estimation in Batteries," Energies, MDPI, vol. 14(14), pages 1-33, July.
    12. Zhang, Cheng & Allafi, Walid & Dinh, Quang & Ascencio, Pedro & Marco, James, 2018. "Online estimation of battery equivalent circuit model parameters and state of charge using decoupled least squares technique," Energy, Elsevier, vol. 142(C), pages 678-688.
    13. Danial Karimi & Sahar Khaleghi & Hamidreza Behi & Hamidreza Beheshti & Md Sazzad Hosen & Mohsen Akbarzadeh & Joeri Van Mierlo & Maitane Berecibar, 2021. "Lithium-Ion Capacitor Lifetime Extension through an Optimal Thermal Management System for Smart Grid Applications," Energies, MDPI, vol. 14(10), pages 1-14, May.
    14. Ines Baccouche & Sabeur Jemmali & Bilal Manai & Noshin Omar & Najoua Essoukri Ben Amara, 2017. "Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(6), pages 1-22, May.
    15. Wang, Zhuo & Gladwin, Daniel T. & Smith, Matthew J. & Haass, Stefan, 2021. "Practical state estimation using Kalman filter methods for large-scale battery systems," Applied Energy, Elsevier, vol. 294(C).
    16. Firouz, Y. & Omar, N. & Timmermans, J.-M. & Van den Bossche, P. & Van Mierlo, J., 2015. "Lithium-ion capacitor – Characterization and development of new electrical model," Energy, Elsevier, vol. 83(C), pages 597-613.
    17. Danial Karimi & Hamidreza Behi & Joeri Van Mierlo & Maitane Berecibar, 2022. "An Experimental Study on Thermal Performance of Graphite-Based Phase-Change Materials for High-Power Batteries," Energies, MDPI, vol. 15(7), pages 1-13, March.
    18. Qian, Cheng & Xu, Binghui & Chang, Liang & Sun, Bo & Feng, Qiang & Yang, Dezhen & Ren, Yi & Wang, Zili, 2021. "Convolutional neural network based capacity estimation using random segments of the charging curves for lithium-ion batteries," Energy, Elsevier, vol. 227(C).
    19. Sheikholeslami, M. & Ganji, D.D., 2016. "Heat transfer enhancement in an air to water heat exchanger with discontinuous helical turbulators; experimental and numerical studies," Energy, Elsevier, vol. 116(P1), pages 341-352.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danial Karimi & Hamidreza Behi & Mohsen Akbarzadeh & Joeri Van Mierlo & Maitane Berecibar, 2021. "Holistic 1D Electro-Thermal Model Coupled to 3D Thermal Model for Hybrid Passive Cooling System Analysis in Electric Vehicles," Energies, MDPI, vol. 14(18), pages 1-20, September.
    2. Prarthana Pillai & Sneha Sundaresan & Pradeep Kumar & Krishna R. Pattipati & Balakumar Balasingam, 2022. "Open-Circuit Voltage Models for Battery Management Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-25, September.
    3. Md Ohirul Qays & Yonis Buswig & Md Liton Hossain & Ahmed Abu-Siada, 2020. "Active Charge Balancing Strategy Using the State of Charge Estimation Technique for a PV-Battery Hybrid System," Energies, MDPI, vol. 13(13), pages 1-16, July.
    4. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    5. Behi, Hamidreza & Karimi, Danial & Jaguemont, Joris & Gandoman, Foad Heidari & Kalogiannis, Theodoros & Berecibar, Maitane & Van Mierlo, Joeri, 2021. "Novel thermal management methods to improve the performance of the Li-ion batteries in high discharge current applications," Energy, Elsevier, vol. 224(C).
    6. Chen, Zheng & Zhao, Hongqian & Shu, Xing & Zhang, Yuanjian & Shen, Jiangwei & Liu, Yonggang, 2021. "Synthetic state of charge estimation for lithium-ion batteries based on long short-term memory network modeling and adaptive H-Infinity filter," Energy, Elsevier, vol. 228(C).
    7. Zhang, Shuzhi & Zhang, Chen & Jiang, Shiyong & Zhang, Xiongwen, 2022. "A comparative study of different adaptive extended/unscented Kalman filters for lithium-ion battery state-of-charge estimation," Energy, Elsevier, vol. 246(C).
    8. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Hatherall, Ollie & Barai, Anup & Niri, Mona Faraji & Wang, Zeyuan & Marco, James, 2024. "Novel battery power capability assessment for improved eVTOL aircraft landing," Applied Energy, Elsevier, vol. 361(C).
    10. Amiri, Mahshid N. & Håkansson, Anne & Burheim, Odne S. & Lamb, Jacob J., 2024. "Lithium-ion battery digitalization: Combining physics-based models and machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
    11. Maheshwari, A. & Nageswari, S., 2022. "Real-time state of charge estimation for electric vehicle power batteries using optimized filter," Energy, Elsevier, vol. 254(PB).
    12. Xiong, Rui & Yu, Quanqing & Wang, Le Yi & Lin, Cheng, 2017. "A novel method to obtain the open circuit voltage for the state of charge of lithium ion batteries in electric vehicles by using H infinity filter," Applied Energy, Elsevier, vol. 207(C), pages 346-353.
    13. Qian, Cheng & Guan, Hongsheng & Xu, Binghui & Xia, Quan & Sun, Bo & Ren, Yi & Wang, Zili, 2024. "A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions," Energy, Elsevier, vol. 294(C).
    14. Fan, Kesen & Wan, Yiming & Wang, Zhuo & Jiang, Kai, 2023. "Time-efficient identification of lithium-ion battery temperature-dependent OCV-SOC curve using multi-output Gaussian process," Energy, Elsevier, vol. 268(C).
    15. Simone Barcellona & Lorenzo Codecasa & Silvia Colnago & Luigi Piegari, 2024. "Open-Circuit Voltage Variation in LiCoO 2 Battery Cycled in Different States of Charge Regions," Energies, MDPI, vol. 17(10), pages 1-17, May.
    16. Zhu, Rui & Duan, Bin & Zhang, Chenghui & Gong, Sizhao, 2019. "Accurate lithium-ion battery modeling with inverse repeat binary sequence for electric vehicle applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    17. Lin, Yan-Hui & Ruan, Sheng-Jia & Chen, Yun-Xia & Li, Yan-Fu, 2023. "Physics-informed deep learning for lithium-ion battery diagnostics using electrochemical impedance spectroscopy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    18. Chen, Laien & Zeng, Xiaoyong & Xia, Xiangyang & Sun, Yaoke & Yue, Jiahui, 2024. "A modeling and state of charge estimation approach to lithium-ion batteries based on the state-dependent autoregressive model with exogenous inputs," Energy, Elsevier, vol. 300(C).
    19. Hamidreza Behi & Danial Karimi & Rekabra Youssef & Mahesh Suresh Patil & Joeri Van Mierlo & Maitane Berecibar, 2021. "Comprehensive Passive Thermal Management Systems for Electric Vehicles," Energies, MDPI, vol. 14(13), pages 1-15, June.
    20. Bockrath, Steffen & Lorentz, Vincent & Pruckner, Marco, 2023. "State of health estimation of lithium-ion batteries with a temporal convolutional neural network using partial load profiles," Applied Energy, Elsevier, vol. 329(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:339:y:2023:i:c:s0306261923003513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.