IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i18p6803-d917461.html
   My bibliography  Save this article

Open-Circuit Voltage Models for Battery Management Systems: A Review

Author

Listed:
  • Prarthana Pillai

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada)

  • Sneha Sundaresan

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada)

  • Pradeep Kumar

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada)

  • Krishna R. Pattipati

    (Department of Electrical and Computer Engineering, University of Connecticut, Storrs, CT 06269, USA)

  • Balakumar Balasingam

    (Department of Electrical and Computer Engineering, University of Windsor, Windsor, ON N9B 3P4, Canada)

Abstract

A battery management system (BMS) plays a crucial role to ensure the safety, efficiency, and reliability of a rechargeable Li-ion battery pack. State of charge (SOC) estimation is an important operation within a BMS. Estimated SOC is required in several BMS operations, such as remaining power and mileage estimation, battery capacity estimation, charge termination, and cell balancing. The open-circuit voltage (OCV) look-up-based SOC estimation approach is widely used in battery management systems. For OCV lookup, the OCV–SOC characteristic is empirically measured and parameterized a priori. The literature shows numerous OCV–SOC models and approaches to characterize them and use them in SOC estimation. However, the selection of an OCV–SOC model must consider several factors: (i) Modeling errors due to approximations, age/temperature effects, and cell-to-cell variations; (ii) Likelihood and severity of errors when the OCV–SOC parameters are rounded; (iii) Computing system requirements to store and process OCV parameters; and (iv) The required computational complexity of real-time OCV lookup algorithms. This paper presents a review of existing OCV–SOC models and proposes a systematic approach to select a suitable OCV–SOC for implementation based on various constraints faced by a BMS designer in practical application.

Suggested Citation

  • Prarthana Pillai & Sneha Sundaresan & Pradeep Kumar & Krishna R. Pattipati & Balakumar Balasingam, 2022. "Open-Circuit Voltage Models for Battery Management Systems: A Review," Energies, MDPI, vol. 15(18), pages 1-25, September.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6803-:d:917461
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/18/6803/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/18/6803/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Balakumar Balasingam & Mostafa Ahmed & Krishna Pattipati, 2020. "Battery Management Systems—Challenges and Some Solutions," Energies, MDPI, vol. 13(11), pages 1-19, June.
    2. Quanqing Yu & Changjiang Wan & Junfu Li & Lixin E & Xin Zhang & Yonghe Huang & Tao Liu, 2021. "An Open Circuit Voltage Model Fusion Method for State of Charge Estimation of Lithium-Ion Batteries," Energies, MDPI, vol. 14(7), pages 1-22, March.
    3. Caiping Zhang & Jiuchun Jiang & Linjing Zhang & Sijia Liu & Leyi Wang & Poh Chiang Loh, 2016. "A Generalized SOC-OCV Model for Lithium-Ion Batteries and the SOC Estimation for LNMCO Battery," Energies, MDPI, vol. 9(11), pages 1-16, November.
    4. Kiarash Movassagh & Arif Raihan & Balakumar Balasingam & Krishna Pattipati, 2021. "A Critical Look at Coulomb Counting Approach for State of Charge Estimation in Batteries," Energies, MDPI, vol. 14(14), pages 1-33, July.
    5. Ines Baccouche & Sabeur Jemmali & Bilal Manai & Noshin Omar & Najoua Essoukri Ben Amara, 2017. "Improved OCV Model of a Li-Ion NMC Battery for Online SOC Estimation Using the Extended Kalman Filter," Energies, MDPI, vol. 10(6), pages 1-22, May.
    6. Pan, Haihong & Lü, Zhiqiang & Lin, Weilong & Li, Junzi & Chen, Lin, 2017. "State of charge estimation of lithium-ion batteries using a grey extended Kalman filter and a novel open-circuit voltage model," Energy, Elsevier, vol. 138(C), pages 764-775.
    7. He, Hongwen & Zhang, Xiaowei & Xiong, Rui & Xu, Yongli & Guo, Hongqiang, 2012. "Online model-based estimation of state-of-charge and open-circuit voltage of lithium-ion batteries in electric vehicles," Energy, Elsevier, vol. 39(1), pages 310-318.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Tianyu & Ma, Zhongjing & Zou, Suli & Chen, Zhan & Wang, Peng, 2024. "Lithium-ion battery state-of-health estimation: A self-supervised framework incorporating weak labels," Applied Energy, Elsevier, vol. 355(C).
    2. Marcio L. M. Amorim & Gabriel Augusto Ginja & João Paulo Carmo & Melkzedekue Moraes Alcântara Moreira & Adriano Almeida Goncalves Siqueira & Jose A. Afonso, 2022. "Low-Cost/High-Precision Smart Power Supply for Data Loggers," Energies, MDPI, vol. 16(1), pages 1-27, December.
    3. Tadeusz Białoń & Roman Niestrój & Wojciech Korski, 2023. "PSO-Based Identification of the Li-Ion Battery Cell Parameters," Energies, MDPI, vol. 16(10), pages 1-22, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karimi, Danial & Behi, Hamidreza & Berecibar, Maitane & Van Mierlo, Joeri, 2023. "A comprehensive coupled 0D-ECM to 3D-CFD thermal model for heat pipe assisted-air cooling thermal management system under fast charge and discharge," Applied Energy, Elsevier, vol. 339(C).
    2. Sneha Sundaresan & Bharath Chandra Devabattini & Pradeep Kumar & Krishna R. Pattipati & Balakumar Balasingam, 2022. "Tabular Open Circuit Voltage Modelling of Li-Ion Batteries for Robust SOC Estimation," Energies, MDPI, vol. 15(23), pages 1-23, December.
    3. Hui Pang & Fengqi Zhang, 2018. "Experimental Data-Driven Parameter Identification and State of Charge Estimation for a Li-Ion Battery Equivalent Circuit Model," Energies, MDPI, vol. 11(5), pages 1-14, April.
    4. Md Ohirul Qays & Yonis Buswig & Md Liton Hossain & Ahmed Abu-Siada, 2020. "Active Charge Balancing Strategy Using the State of Charge Estimation Technique for a PV-Battery Hybrid System," Energies, MDPI, vol. 13(13), pages 1-16, July.
    5. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    6. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    7. Wang, Limei & Sun, Jingjing & Cai, Yingfeng & Lian, Yubo & Jin, Mengjie & Zhao, Xiuliang & Wang, Ruochen & Chen, Long & Chen, Jun, 2023. "A novel OCV curve reconstruction and update method of lithium-ion batteries at different temperatures based on cloud data," Energy, Elsevier, vol. 268(C).
    8. Tadeusz Białoń & Roman Niestrój & Wojciech Korski, 2023. "PSO-Based Identification of the Li-Ion Battery Cell Parameters," Energies, MDPI, vol. 16(10), pages 1-22, May.
    9. Saeed Mian Qaisar, 2020. "Event-Driven Coulomb Counting for Effective Online Approximation of Li-Ion Battery State of Charge," Energies, MDPI, vol. 13(21), pages 1-20, October.
    10. Shi, Haotian & Wang, Shunli & Fernandez, Carlos & Yu, Chunmei & Xu, Wenhua & Dablu, Bobobee Etse & Wang, Liping, 2022. "Improved multi-time scale lumped thermoelectric coupling modeling and parameter dispersion evaluation of lithium-ion batteries," Applied Energy, Elsevier, vol. 324(C).
    11. Zheng, Linfeng & Zhu, Jianguo & Wang, Guoxiu & Lu, Dylan Dah-Chuan & He, Tingting, 2018. "Differential voltage analysis based state of charge estimation methods for lithium-ion batteries using extended Kalman filter and particle filter," Energy, Elsevier, vol. 158(C), pages 1028-1037.
    12. Jinqing Linghu & Longyun Kang & Ming Liu & Bihua Hu & Zefeng Wang, 2019. "An Improved Model Equation Based on a Gaussian Function Trinomial for State of Charge Estimation of Lithium-ion Batteries," Energies, MDPI, vol. 12(7), pages 1-15, April.
    13. Bian, Xiaolei & Liu, Longcheng & Yan, Jinying, 2019. "A model for state-of-health estimation of lithium ion batteries based on charging profiles," Energy, Elsevier, vol. 177(C), pages 57-65.
    14. Jiandong Duan & Peng Wang & Wentao Ma & Xinyu Qiu & Xuan Tian & Shuai Fang, 2020. "State of Charge Estimation of Lithium Battery Based on Improved Correntropy Extended Kalman Filter," Energies, MDPI, vol. 13(16), pages 1-18, August.
    15. Xian Wang & Zhengxiang Song & Kun Yang & Xuyang Yin & Yingsan Geng & Jianhua Wang, 2019. "State of Charge Estimation for Lithium-Bismuth Liquid Metal Batteries," Energies, MDPI, vol. 12(1), pages 1-22, January.
    16. Pranav Nair & Vinay Vakharia & Himanshu Borade & Milind Shah & Vishal Wankhede, 2023. "Predicting Li-Ion Battery Remaining Useful Life: An XDFM-Driven Approach with Explainable AI," Energies, MDPI, vol. 16(15), pages 1-19, July.
    17. Tanim, Tanvir R. & Rahn, Christopher D. & Wang, Chao-Yang, 2015. "State of charge estimation of a lithium ion cell based on a temperature dependent and electrolyte enhanced single particle model," Energy, Elsevier, vol. 80(C), pages 731-739.
    18. Pang, Haidong & Yang, Zunxian & Lv, Jun & Yan, Wenhuan & Guo, Tailiang, 2014. "Novel MnOx@Carbon hybrid nanowires with core/shell architecture as highly reversible anode materials for lithium ion batteries," Energy, Elsevier, vol. 69(C), pages 392-398.
    19. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiaoyong & Fernandez, Carlos, 2022. "An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 326(C).
    20. Xu Lei & Xi Zhao & Guiping Wang & Weiyu Liu, 2019. "A Novel Temperature–Hysteresis Model for Power Battery of Electric Vehicles with an Adaptive Joint Estimator on State of Charge and Power," Energies, MDPI, vol. 12(19), pages 1-24, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:18:p:6803-:d:917461. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.