IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7386-d673121.html
   My bibliography  Save this article

A Physically Inspired Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells

Author

Listed:
  • Stefano Leonori

    (Department of Information Engineering, Electronics and Telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy)

  • Luca Baldini

    (Department of Information Engineering, Electronics and Telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy)

  • Antonello Rizzi

    (Department of Information Engineering, Electronics and Telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy)

  • Fabio Massimo Frattale Mascioli

    (Department of Information Engineering, Electronics and Telecommunications, University of Rome “La Sapienza”, Via Eudossiana 18, 00184 Rome, Italy)

Abstract

Battery Management System (BMS) design for Lithium-ion batteries State of Charge (SoC) prediction has a crucial role in Electric Vehicles (EVs) and smart grids development. The need to design compact, light and fast devices requires finding a suitable trade-off between effectiveness and efficiency. In the literature, it is well emphasized that the application of electrochemical-based methods such as the Pseudo-Two-Dimensional (P2D) model is computationally prohibitive and requires significant simplifications. Conversely, plain Equivalent Circuit Models (ECM) are too simple and unable to represent the cell dynamics. The application of an Ensemble Neural Network (ENN) as Equivalent Neural Network Circuit (ENNC) emerged as a promising solution able to synthesize expressive and computationally efficient models. Indeed, with the support of a suitable dataset, an ENN can be configured to represent a given ECM, modeling each lumped parameter through an assigned Neural Network (NN). Accordingly, the ENNC system is able to keep a physical description of the battery cell while approximating the non-linear dynamic of each component. The paper proposes a novel ENNC battery named Physical Inspired-Equivalent Neural Network Circuit (PI-ENNC) whose ensemble architecture relies on a fractional-order Extended Single Particle (ESP) Lithium-ion cell formulation. The PI-ENNC is designed to approximate the ESP transfer functions referred to the ohmic effects, the electrolyte diffusion and the non-uniform charge distribution in the cell. The proposed model has been tested with three publicly available datasets, investigating the model behavior according to two different training strategies and with different input configurations. In order to prove its effectiveness, results have been compared with a simpler version proposed in a previous work. Results highlight the effectiveness of PI-ENNC in SoC prediction, underlining the importance of designing an ENN architecture that leverages on equations and constraints that reflect the physical phenomena of the cell.

Suggested Citation

  • Stefano Leonori & Luca Baldini & Antonello Rizzi & Fabio Massimo Frattale Mascioli, 2021. "A Physically Inspired Equivalent Neural Network Circuit Model for SoC Estimation of Electrochemical Cells," Energies, MDPI, vol. 14(21), pages 1-29, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7386-:d:673121
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Li, J. & Adewuyi, K. & Lotfi, N. & Landers, R.G. & Park, J., 2018. "A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation," Applied Energy, Elsevier, vol. 212(C), pages 1178-1190.
    2. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    3. Wei, Zhongbao & Zhao, Jiyun & Ji, Dongxu & Tseng, King Jet, 2017. "A multi-timescale estimator for battery state of charge and capacity dual estimation based on an online identified model," Applied Energy, Elsevier, vol. 204(C), pages 1264-1274.
    4. Duffner, F. & Wentker, M. & Greenwood, M. & Leker, J., 2020. "Battery cost modeling: A review and directions for future research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    5. Dai, Haifeng & Jiang, Bo & Hu, Xiaosong & Lin, Xianke & Wei, Xuezhe & Pecht, Michael, 2021. "Advanced battery management strategies for a sustainable energy future: Multilayer design concepts and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    6. Zheng, Fangdan & Xing, Yinjiao & Jiang, Jiuchun & Sun, Bingxiang & Kim, Jonghoon & Pecht, Michael, 2016. "Influence of different open circuit voltage tests on state of charge online estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 183(C), pages 513-525.
    7. Xiong, Rui & Sun, Fengchun & Chen, Zheng & He, Hongwen, 2014. "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion olymer battery in electric vehicles," Applied Energy, Elsevier, vol. 113(C), pages 463-476.
    8. Longxing Wu & Kai Liu & Hui Pang & Jiamin Jin, 2021. "Online SOC Estimation Based on Simplified Electrochemical Model for Lithium-Ion Batteries Considering Current Bias," Energies, MDPI, vol. 14(17), pages 1-12, August.
    9. Dai, Haifeng & Guo, Pingjing & Wei, Xuezhe & Sun, Zechang & Wang, Jiayuan, 2015. "ANFIS (adaptive neuro-fuzzy inference system) based online SOC (State of Charge) correction considering cell divergence for the EV (electric vehicle) traction batteries," Energy, Elsevier, vol. 80(C), pages 350-360.
    10. Ren, Xiaoqing & Liu, Shulin & Yu, Xiaodong & Dong, Xia, 2021. "A method for state-of-charge estimation of lithium-ion batteries based on PSO-LSTM," Energy, Elsevier, vol. 234(C).
    11. Kiarash Movassagh & Arif Raihan & Balakumar Balasingam & Krishna Pattipati, 2021. "A Critical Look at Coulomb Counting Approach for State of Charge Estimation in Batteries," Energies, MDPI, vol. 14(14), pages 1-33, July.
    12. Xia, Bizhong & Chen, Chaoren & Tian, Yong & Wang, Mingwang & Sun, Wei & Xu, Zhihui, 2015. "State of charge estimation of lithium-ion batteries based on an improved parameter identification method," Energy, Elsevier, vol. 90(P2), pages 1426-1434.
    13. Dong, Guangzhong & Zhang, Xu & Zhang, Chenbin & Chen, Zonghai, 2015. "A method for state of energy estimation of lithium-ion batteries based on neural network model," Energy, Elsevier, vol. 90(P1), pages 879-888.
    14. Benmouna, A. & Becherif, M. & Boulon, L. & Dépature, C. & Ramadan, Haitham S., 2021. "Efficient experimental energy management operating for FC/battery/SC vehicles via hybrid Artificial Neural Networks-Passivity Based Control," Renewable Energy, Elsevier, vol. 178(C), pages 1291-1302.
    15. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    16. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    17. Gerardo J. Osório & Miadreza Shafie-khah & Gonçalo C. R. Carvalho & João P. S. Catalão, 2019. "Analysis Application of Controllable Load Appliances Management in a Smart Home," Energies, MDPI, vol. 12(19), pages 1-24, September.
    18. Gao, Yizhao & Zhu, Chong & Zhang, Xi & Guo, Bangjun, 2021. "Implementation and evaluation of a practical electrochemical- thermal model of lithium-ion batteries for EV battery management system," Energy, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Suresh Panchanathan & Pradeep Vishnuram & Narayanamoorthi Rajamanickam & Mohit Bajaj & Vojtech Blazek & Lukas Prokop & Stanislav Misak, 2023. "A Comprehensive Review of the Bidirectional Converter Topologies for the Vehicle-to-Grid System," Energies, MDPI, vol. 16(5), pages 1-33, March.
    2. Tao Zhang & Yang Wang & Rui Ma & Yi Zhao & Mengjiao Shi & Wen Qu, 2023. "Prediction of Lithium Battery Health State Based on Temperature Rate of Change and Incremental Capacity Change," Energies, MDPI, vol. 16(22), pages 1-17, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Yujie & Song, Dengwei & Wang, Zhenya & Lu, Chen & Zerhouni, Noureddine, 2020. "An ensemble prognostic method for lithium-ion battery capacity estimation based on time-varying weight allocation," Applied Energy, Elsevier, vol. 266(C).
    2. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    3. Sun, Daoming & Yu, Xiaoli & Wang, Chongming & Zhang, Cheng & Huang, Rui & Zhou, Quan & Amietszajew, Taz & Bhagat, Rohit, 2021. "State of charge estimation for lithium-ion battery based on an Intelligent Adaptive Extended Kalman Filter with improved noise estimator," Energy, Elsevier, vol. 214(C).
    4. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    5. Lin, Cheng & Yu, Quanqing & Xiong, Rui & Wang, Le Yi, 2017. "A study on the impact of open circuit voltage tests on state of charge estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 205(C), pages 892-902.
    6. Zhu, Rui & Duan, Bin & Zhang, Chenghui & Gong, Sizhao, 2019. "Accurate lithium-ion battery modeling with inverse repeat binary sequence for electric vehicle applications," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Yang, Kuo & Tang, Yugui & Zhang, Shujing & Zhang, Zhen, 2022. "A deep learning approach to state of charge estimation of lithium-ion batteries based on dual-stage attention mechanism," Energy, Elsevier, vol. 244(PB).
    8. Lin, Cheng & Mu, Hao & Xiong, Rui & Shen, Weixiang, 2016. "A novel multi-model probability battery state of charge estimation approach for electric vehicles using H-infinity algorithm," Applied Energy, Elsevier, vol. 166(C), pages 76-83.
    9. Li, Shi & Pischinger, Stefan & He, Chaoyi & Liang, Liliuyuan & Stapelbroek, Michael, 2018. "A comparative study of model-based capacity estimation algorithms in dual estimation frameworks for lithium-ion batteries under an accelerated aging test," Applied Energy, Elsevier, vol. 212(C), pages 1522-1536.
    10. Wang, Jianfeng & Zuo, Zhiwen & Wei, Yili & Jia, Yongkai & Chen, Bowei & Li, Yuhan & Yang, Na, 2024. "State of charge estimation of lithium-ion battery based on GA-LSTM and improved IAKF," Applied Energy, Elsevier, vol. 368(C).
    11. Wenxian Duan & Chuanxue Song & Silun Peng & Feng Xiao & Yulong Shao & Shixin Song, 2020. "An Improved Gated Recurrent Unit Network Model for State-of-Charge Estimation of Lithium-Ion Battery," Energies, MDPI, vol. 13(23), pages 1-19, December.
    12. Takyi-Aninakwa, Paul & Wang, Shunli & Zhang, Hongying & Yang, Xiao & Fernandez, Carlos, 2023. "A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures," Energy, Elsevier, vol. 273(C).
    13. Ma, Zeyu & Yang, Ruixin & Wang, Zhenpo, 2019. "A novel data-model fusion state-of-health estimation approach for lithium-ion batteries," Applied Energy, Elsevier, vol. 237(C), pages 836-847.
    14. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Tang, Xiaopeng & Liu, Kailong & Lu, Jingyi & Liu, Boyang & Wang, Xin & Gao, Furong, 2020. "Battery incremental capacity curve extraction by a two-dimensional Luenberger–Gaussian-moving-average filter," Applied Energy, Elsevier, vol. 280(C).
    16. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    17. Zheng Chen & Xiaoyu Li & Jiangwei Shen & Wensheng Yan & Renxin Xiao, 2016. "A Novel State of Charge Estimation Algorithm for Lithium-Ion Battery Packs of Electric Vehicles," Energies, MDPI, vol. 9(9), pages 1-15, September.
    18. Meng, Jinhao & Cai, Lei & Stroe, Daniel-Ioan & Luo, Guangzhao & Sui, Xin & Teodorescu, Remus, 2019. "Lithium-ion battery state-of-health estimation in electric vehicle using optimized partial charging voltage profiles," Energy, Elsevier, vol. 185(C), pages 1054-1062.
    19. Li, Yanwen & Wang, Chao & Gong, Jinfeng, 2017. "A multi-model probability SOC fusion estimation approach using an improved adaptive unscented Kalman filter technique," Energy, Elsevier, vol. 141(C), pages 1402-1415.
    20. Yujie Cheng & Laifa Tao & Chao Yang, 2017. "Lithium-Ion Battery Capacity Estimation: A Method Based on Visual Cognition," Complexity, Hindawi, vol. 2017, pages 1-13, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7386-:d:673121. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.