IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v133y2020ics1364032120305633.html
   My bibliography  Save this article

A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles

Author

Listed:
  • Turksoy, Arzu
  • Teke, Ahmet
  • Alkaya, Alkan

Abstract

With the development of electric vehicle (EV) technologies, efficient and reliable use of rechargeable batteries (RBs) has become the key subject for automotive manufacturers. Among RBs, lithium-ion battery technology is the most prominent about high specific energy and specific power. The lithium-ion battery pack consists of battery cells with low terminal voltage connected in series to meet the voltage requirement of the EV system. However, the useable capacity of the battery pack is restricted by the low charge cell among the string. The manufacturing inconsistency and different operating conditions of each cell cause the charge imbalances in the battery pack. These imbalances lead to the reduction of the useable capacity, acceleration of cell degradation, and, more importantly, serious safety hazards like overcharging. In all EVs and hybrid electric vehicles (HEVs) using lithium-ion battery systems, the cell balancing controller is an essential task which managed by the battery management system (BMS) to improve battery life cycle and safety. This paper presents a comprehensive overview of the DC-DC converter-based battery balancing system because of the impactful contribution to the charge balancing control and the design of balancing control algorithms. Moreover, other BMS functions such as state of charge (SOC) estimation, which affects balancing performance, are handled in this review.

Suggested Citation

  • Turksoy, Arzu & Teke, Ahmet & Alkaya, Alkan, 2020. "A comprehensive overview of the dc-dc converter-based battery charge balancing methods in electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
  • Handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120305633
    DOI: 10.1016/j.rser.2020.110274
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032120305633
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.110274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Feng, Fei & Hu, Xiaosong & Hu, Lin & Hu, Fengling & Li, Yang & Zhang, Lei, 2019. "Propagation mechanisms and diagnosis of parameter inconsistency within Li-Ion battery packs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 102-113.
    2. Hoque, M.M. & Hannan, M.A. & Mohamed, A. & Ayob, A., 2017. "Battery charge equalization controller in electric vehicle applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1363-1385.
    3. Zhou, Zhibin & Benbouzid, Mohamed & Frédéric Charpentier, Jean & Scuiller, Franck & Tang, Tianhao, 2013. "A review of energy storage technologies for marine current energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 390-400.
    4. Xiaosong Hu & Fengchun Sun & Yuan Zou, 2010. "Estimation of State of Charge of a Lithium-Ion Battery Pack for Electric Vehicles Using an Adaptive Luenberger Observer," Energies, MDPI, vol. 3(9), pages 1-18, September.
    5. Shrivastava, Prashant & Soon, Tey Kok & Idris, Mohd Yamani Idna Bin & Mekhilef, Saad, 2019. "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    6. Liu, Guoan & Xu, Cheng & Li, Haomiao & Jiang, Kai & Wang, Kangli, 2019. "State of charge and online model parameters co-estimation for liquid metal batteries," Applied Energy, Elsevier, vol. 250(C), pages 677-684.
    7. Shubiao Wang & Longyun Kang & Xiangwei Guo & Zefeng Wang & Ming Liu, 2017. "A Novel Layered Bidirectional Equalizer Based on a Buck-Boost Converter for Series-Connected Battery Strings," Energies, MDPI, vol. 10(7), pages 1-15, July.
    8. Ning, Bo & Cao, Binggang & Wang, Bin & Zou, Zhongyue, 2018. "Adaptive sliding mode observers for lithium-ion battery state estimation based on parameters identified online," Energy, Elsevier, vol. 153(C), pages 732-742.
    9. Manzetti, Sergio & Mariasiu, Florin, 2015. "Electric vehicle battery technologies: From present state to future systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1004-1012.
    10. Sun, Fengchun & Hu, Xiaosong & Zou, Yuan & Li, Siguang, 2011. "Adaptive unscented Kalman filtering for state of charge estimation of a lithium-ion battery for electric vehicles," Energy, Elsevier, vol. 36(5), pages 3531-3540.
    11. Hu, Minghui & Li, Yunxiao & Li, Shuxian & Fu, Chunyun & Qin, Datong & Li, Zonghua, 2018. "Lithium-ion battery modeling and parameter identification based on fractional theory," Energy, Elsevier, vol. 165(PB), pages 153-163.
    12. Zahid, Taimoor & Xu, Kun & Li, Weimin & Li, Chenming & Li, Hongzhe, 2018. "State of charge estimation for electric vehicle power battery using advanced machine learning algorithm under diversified drive cycles," Energy, Elsevier, vol. 162(C), pages 871-882.
    13. Shun-Chung Wang & Chun-Yu Liu & Yi-Hua Liu, 2018. "A Fast Equalizer with Adaptive Balancing Current Control," Energies, MDPI, vol. 11(5), pages 1-15, April.
    14. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    15. Zhang, Shumei & Qiang, Jiaxi & Yang, Lin & Zhao, Xiaowei, 2016. "Prior-knowledge-independent equalization to improve battery uniformity with energy efficiency and time efficiency for lithium-ion battery," Energy, Elsevier, vol. 94(C), pages 1-12.
    16. Ren, Hongbin & Zhao, Yuzhuang & Chen, Sizhong & Wang, Taipeng, 2019. "Design and implementation of a battery management system with active charge balance based on the SOC and SOH online estimation," Energy, Elsevier, vol. 166(C), pages 908-917.
    17. Xintian Liu & Yafei Sun & Yao He & Xinxin Zheng & Guojian Zeng & Jiangfeng Zhang, 2017. "Battery Equalization by Fly-Back Transformers with Inductance, Capacitance and Diode Absorbing Circuits," Energies, MDPI, vol. 10(10), pages 1-16, September.
    18. Karthikeyan, V. & Gupta, Rajesh, 2017. "Light-load efficiency improvement by extending ZVS range in DAB-bidirectional DC-DC converter for energy storage applications," Energy, Elsevier, vol. 130(C), pages 15-21.
    19. Xiangwei Guo & Longyun Kang & Yuan Yao & Zhizhen Huang & Wenbiao Li, 2016. "Joint Estimation of the Electric Vehicle Power Battery State of Charge Based on the Least Squares Method and the Kalman Filter Algorithm," Energies, MDPI, vol. 9(2), pages 1-16, February.
    20. Hannan, M.A. & Hoque, M.M. & Mohamed, A. & Ayob, A., 2017. "Review of energy storage systems for electric vehicle applications: Issues and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 771-789.
    21. Çelik, Özgür & Teke, Ahmet & Tan, Adnan, 2018. "Overview of micro-inverters as a challenging technology in photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3191-3206.
    22. Zheng, Yuejiu & Ouyang, Minggao & Lu, Languang & Li, Jianqiu & Han, Xuebing & Xu, Liangfei & Ma, Hongbin & Dollmeyer, Thomas A. & Freyermuth, Vincent, 2013. "Cell state-of-charge inconsistency estimation for LiFePO4 battery pack in hybrid electric vehicles using mean-difference model," Applied Energy, Elsevier, vol. 111(C), pages 571-580.
    23. Ng, Kong Soon & Moo, Chin-Sien & Chen, Yi-Ping & Hsieh, Yao-Ching, 2009. "Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries," Applied Energy, Elsevier, vol. 86(9), pages 1506-1511, September.
    24. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2017. "On-line battery state-of-charge estimation based on an integrated estimator," Applied Energy, Elsevier, vol. 185(P2), pages 2026-2032.
    25. Yinjiao Xing & Eden W. M. Ma & Kwok L. Tsui & Michael Pecht, 2011. "Battery Management Systems in Electric and Hybrid Vehicles," Energies, MDPI, vol. 4(11), pages 1-18, October.
    26. Zhongyue Zou & Jun Xu & Chris Mi & Binggang Cao & Zheng Chen, 2014. "Evaluation of Model Based State of Charge Estimation Methods for Lithium-Ion Batteries," Energies, MDPI, vol. 7(8), pages 1-18, August.
    27. Zheng, Fangdan & Jiang, Jiuchun & Sun, Bingxiang & Zhang, Weige & Pecht, Michael, 2016. "Temperature dependent power capability estimation of lithium-ion batteries for hybrid electric vehicles," Energy, Elsevier, vol. 113(C), pages 64-75.
    28. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai, 2014. "A method for joint estimation of state-of-charge and available energy of LiFePO4 batteries," Applied Energy, Elsevier, vol. 135(C), pages 81-87.
    29. Diao, Weiping & Xue, Nan & Bhattacharjee, Vikram & Jiang, Jiuchun & Karabasoglu, Orkun & Pecht, Michael, 2018. "Active battery cell equalization based on residual available energy maximization," Applied Energy, Elsevier, vol. 210(C), pages 690-698.
    30. Wang, Yujie & Zhang, Chenbin & Chen, Zonghai & Xie, Jing & Zhang, Xu, 2015. "A novel active equalization method for lithium-ion batteries in electric vehicles," Applied Energy, Elsevier, vol. 145(C), pages 36-42.
    31. Amjad, Shaik & Neelakrishnan, S. & Rudramoorthy, R., 2010. "Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1104-1110, April.
    32. Dong, Guangzhong & Wei, Jingwen & Zhang, Chenbin & Chen, Zonghai, 2016. "Online state of charge estimation and open circuit voltage hysteresis modeling of LiFePO4 battery using invariant imbedding method," Applied Energy, Elsevier, vol. 162(C), pages 163-171.
    33. Kim, Minho & Chun, Huiyong & Kim, Jungsoo & Kim, Kwangrae & Yu, Jungwook & Kim, Taegyun & Han, Soohee, 2019. "Data-efficient parameter identification of electrochemical lithium-ion battery model using deep Bayesian harmony search," Applied Energy, Elsevier, vol. 254(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saad Khan Baloch & Abdul Sattar Larik & Mukhtiar Ahmed Mahar, 2023. "Analyzing the Effectiveness of Single Active Bridge DC-DC Converter under Transient and Load Variation," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    2. Nuria Novas & Alfredo Alcayde & Isabel Robalo & Francisco Manzano-Agugliaro & Francisco G. Montoya, 2020. "Energies and Its Worldwide Research," Energies, MDPI, vol. 13(24), pages 1-41, December.
    3. Md. Mahamudul Hasan & Shahid Jaman & Thomas Geury & Omar Hegazy, 2023. "Performance Assessment of a Grid-Connected Two-Stage Bidirectional Converter for a Combined PV–Battery Energy Storage System," Energies, MDPI, vol. 16(11), pages 1-20, June.
    4. Turksoy, Arzu & Teke, Ahmet, 2023. "A fast and energy-efficient nonnegative least square-based optimal active battery balancing control strategy for electric vehicle applications," Energy, Elsevier, vol. 262(PA).
    5. Dongchen Qin & Shuai Qin & Tingting Wang & Hongxia Wu & Jiangyi Chen, 2022. "Balanced Control System Based on Bidirectional Flyback DC Converter," Energies, MDPI, vol. 15(19), pages 1-25, October.
    6. Bragadeshwaran Ashok & Chidambaram Kannan & Byron Mason & Sathiaseelan Denis Ashok & Vairavasundaram Indragandhi & Darsh Patel & Atharva Sanjay Wagh & Arnav Jain & Chellapan Kavitha, 2022. "Towards Safer and Smarter Design for Lithium-Ion-Battery-Powered Electric Vehicles: A Comprehensive Review on Control Strategy Architecture of Battery Management System," Energies, MDPI, vol. 15(12), pages 1-44, June.
    7. Martin A. Alarcón-Carbajal & José E. Carvajal-Rubio & Juan D. Sánchez-Torres & David E. Castro-Palazuelos & Guillermo J. Rubio-Astorga, 2022. "An Output Feedback Discrete-Time Controller for the DC-DC Buck Converter," Energies, MDPI, vol. 15(14), pages 1-21, July.
    8. Dapai Shi & Jingyuan Zhao & Chika Eze & Zhenghong Wang & Junbin Wang & Yubo Lian & Andrew F. Burke, 2023. "Cloud-Based Artificial Intelligence Framework for Battery Management System," Energies, MDPI, vol. 16(11), pages 1-21, May.
    9. Chein-Chung Sun & Chun-Hung Chou & Yu-Liang Lin & Yu-Hua Huang, 2022. "A Cost-Effective Passive/Active Hybrid Equalizer Circuit Design," Energies, MDPI, vol. 15(6), pages 1-20, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hu, Lin & Hu, Xiaosong & Che, Yunhong & Feng, Fei & Lin, Xianke & Zhang, Zhiyong, 2020. "Reliable state of charge estimation of battery packs using fuzzy adaptive federated filtering," Applied Energy, Elsevier, vol. 262(C).
    2. Bizhong Xia & Zizhou Lao & Ruifeng Zhang & Yong Tian & Guanghao Chen & Zhen Sun & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang & Huawen Wang, 2017. "Online Parameter Identification and State of Charge Estimation of Lithium-Ion Batteries Based on Forgetting Factor Recursive Least Squares and Nonlinear Kalman Filter," Energies, MDPI, vol. 11(1), pages 1-23, December.
    3. Muhammad Umair Ali & Amad Zafar & Sarvar Hussain Nengroo & Sadam Hussain & Muhammad Junaid Alvi & Hee-Je Kim, 2019. "Towards a Smarter Battery Management System for Electric Vehicle Applications: A Critical Review of Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 12(3), pages 1-33, January.
    4. Woo-Yong Kim & Pyeong-Yeon Lee & Jonghoon Kim & Kyung-Soo Kim, 2019. "A Nonlinear-Model-Based Observer for a State-of-Charge Estimation of a Lithium-Ion Battery in Electric Vehicles," Energies, MDPI, vol. 12(17), pages 1-20, September.
    5. Wang, Yujie & Tian, Jiaqiang & Sun, Zhendong & Wang, Li & Xu, Ruilong & Li, Mince & Chen, Zonghai, 2020. "A comprehensive review of battery modeling and state estimation approaches for advanced battery management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Ingvild B. Espedal & Asanthi Jinasena & Odne S. Burheim & Jacob J. Lamb, 2021. "Current Trends for State-of-Charge (SoC) Estimation in Lithium-Ion Battery Electric Vehicles," Energies, MDPI, vol. 14(11), pages 1-24, June.
    7. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    8. Song, Ziyou & Hou, Jun & Li, Xuefeng & Wu, Xiaogang & Hu, Xiaosong & Hofmann, Heath & Sun, Jing, 2020. "The sequential algorithm for combined state of charge and state of health estimation of lithium-ion battery based on active current injection," Energy, Elsevier, vol. 193(C).
    9. Wei, Jingwen & Dong, Guangzhong & Chen, Zonghai & Kang, Yu, 2017. "System state estimation and optimal energy control framework for multicell lithium-ion battery system," Applied Energy, Elsevier, vol. 187(C), pages 37-49.
    10. Das, Utpal Kumar & Shrivastava, Prashant & Tey, Kok Soon & Bin Idris, Mohd Yamani Idna & Mekhilef, Saad & Jamei, Elmira & Seyedmahmoudian, Mehdi & Stojcevski, Alex, 2020. "Advancement of lithium-ion battery cells voltage equalization techniques: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Turksoy, Arzu & Teke, Ahmet, 2023. "A fast and energy-efficient nonnegative least square-based optimal active battery balancing control strategy for electric vehicle applications," Energy, Elsevier, vol. 262(PA).
    12. Sun, Li & Li, Guanru & You, Fengqi, 2020. "Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    13. Tian, Yong & Lai, Rucong & Li, Xiaoyu & Xiang, Lijuan & Tian, Jindong, 2020. "A combined method for state-of-charge estimation for lithium-ion batteries using a long short-term memory network and an adaptive cubature Kalman filter," Applied Energy, Elsevier, vol. 265(C).
    14. Yang, Fangfang & Xing, Yinjiao & Wang, Dong & Tsui, Kwok-Leung, 2016. "A comparative study of three model-based algorithms for estimating state-of-charge of lithium-ion batteries under a new combined dynamic loading profile," Applied Energy, Elsevier, vol. 164(C), pages 387-399.
    15. Wu, Chunling & Hu, Wenbo & Meng, Jinhao & Xu, Xianfeng & Huang, Xinrong & Cai, Lei, 2023. "State-of-charge estimation of lithium-ion batteries based on MCC-AEKF in non-Gaussian noise environment," Energy, Elsevier, vol. 274(C).
    16. Zhang, Xu & Wang, Yujie & Yang, Duo & Chen, Zonghai, 2016. "An on-line estimation of battery pack parameters and state-of-charge using dual filters based on pack model," Energy, Elsevier, vol. 115(P1), pages 219-229.
    17. Mahmoudzadeh Andwari, Amin & Pesiridis, Apostolos & Rajoo, Srithar & Martinez-Botas, Ricardo & Esfahanian, Vahid, 2017. "A review of Battery Electric Vehicle technology and readiness levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 414-430.
    18. Huang, Deyang & Chen, Ziqiang & Zheng, Changwen & Li, Haibin, 2019. "A model-based state-of-charge estimation method for series-connected lithium-ion battery pack considering fast-varying cell temperature," Energy, Elsevier, vol. 185(C), pages 847-861.
    19. Ning Chen & Xu Zhao & Jiayao Chen & Xiaodong Xu & Peng Zhang & Weihua Gui, 2022. "Design of a Non-Linear Observer for SOC of Lithium-Ion Battery Based on Neural Network," Energies, MDPI, vol. 15(10), pages 1-26, May.
    20. Semeraro, Concetta & Caggiano, Mariateresa & Olabi, Abdul-Ghani & Dassisti, Michele, 2022. "Battery monitoring and prognostics optimization techniques: Challenges and opportunities," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:133:y:2020:i:c:s1364032120305633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.