IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v200y2024ics1364032124003034.html
   My bibliography  Save this article

Lithium-ion battery digitalization: Combining physics-based models and machine learning

Author

Listed:
  • Amiri, Mahshid N.
  • Håkansson, Anne
  • Burheim, Odne S.
  • Lamb, Jacob J.

Abstract

Digitalization of lithium-ion batteries can significantly advance the performance improvement of lithium-ion batteries by enabling smarter controlling strategies during operation and reducing risk and expenses in the design and development phase. Accurate physics-based models play a crucial role in the digitalization of lithium-ion batteries by providing an in-depth understanding of the system. Unfortunately, the high accuracy comes at the cost of increased computational cost preventing the employment of these models in real-time applications and for parametric design. Machine learning models have emerged as powerful tools that are increasingly being used in lithium-ion battery studies. Hybrid models can be developed by integrating physics-based models and machine learning algorithms providing high accuracy as well as computational efficiency. Therefore, this paper presents a comprehensive review of the current trends in integration of physics-based models and machine learning algorithms to accelerate the digitalization of lithium-ion batteries. Firstly, the current direction in explicit modeling methods and machine learning algorithms used in battery research are reviewed. Then a thorough investigation of contemporary hybrid models is presented addressing both battery design and development as well as real-time monitoring and control. The objective of this work is to provide details of hybrid methods including the various applications, type of employed models and machine learning algorithms, the architecture of hybrid models, and the outcome of the proposed models. The challenges and research gaps are discussed aiming to provide inspiration for future works in this field.

Suggested Citation

  • Amiri, Mahshid N. & Håkansson, Anne & Burheim, Odne S. & Lamb, Jacob J., 2024. "Lithium-ion battery digitalization: Combining physics-based models and machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 200(C).
  • Handle: RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124003034
    DOI: 10.1016/j.rser.2024.114577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124003034
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:200:y:2024:i:c:s1364032124003034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.