IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v306y2022ipas0306261921013453.html
   My bibliography  Save this article

Resilient control based frequency regulation scheme of isolated microgrids considering cyber attack and parameter uncertainties

Author

Listed:
  • Mishra, Dillip Kumar
  • Ray, Prakash Kumar
  • Li, Li
  • Zhang, Jiangfeng
  • Hossain, M.J.
  • Mohanty, Asit

Abstract

Cyber-physical attacks and parameter uncertainties are becoming a compelling issue on load frequency control, directly affecting the resilience (i.e., reliability plus security) of the microgrid and multi-microgrid systems enabled by internet of things and the fifth generation communication system. A resilient system aims to endure and quickly restore a system’s transients during extreme events. Therefore, it is critically important to have a resilient system to evade the total system failure or blackout in order to make them attack-resilient. With this objective, this paper presents a resilience-based frequency regulation scheme in a microgrid under different operating conditions, such as, step and random change in load and different wind speed patterns. Furthermore, a cyber-attack model is considered in the problem formulation to make the system robust against external attacks. To protect against the cyber-attack and parameter uncertainties in the system, different control schemes are employed, and their robustness characteristics are compared through various performance indices. Besides, the proposed control schemes are validated through a real-time software synchronisation environment, i.e., OPAL-RT. As noted, the proposed type-2 fuzzy proportional-integral-derivative based controller provides the most significant improvement in the dynamic performance for frequency regulation compared to that of the others under the cyber-attack and uncertainties.

Suggested Citation

  • Mishra, Dillip Kumar & Ray, Prakash Kumar & Li, Li & Zhang, Jiangfeng & Hossain, M.J. & Mohanty, Asit, 2022. "Resilient control based frequency regulation scheme of isolated microgrids considering cyber attack and parameter uncertainties," Applied Energy, Elsevier, vol. 306(PA).
  • Handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921013453
    DOI: 10.1016/j.apenergy.2021.118054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921013453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.118054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    2. Shang-Guan, Xingchen & He, Yong & Zhang, Chuanke & Jiang, Lin & Spencer, Joseph William & Wu, Min, 2020. "Sampled-data based discrete and fast load frequency control for power systems with wind power," Applied Energy, Elsevier, vol. 259(C).
    3. Zhang, Hongtao & Li, Xianguo & Liu, Xinzhi & Yan, Jinyue, 2019. "Enhancing fuel cell durability for fuel cell plug-in hybrid electric vehicles through strategic power management," Applied Energy, Elsevier, vol. 241(C), pages 483-490.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin, Wen-Ting & Chen, Guo & Huang, Yuhan, 2022. "Incentive edge-based federated learning for false data injection attack detection on power grid state estimation: A novel mechanism design approach," Applied Energy, Elsevier, vol. 314(C).
    2. Mishra, Dillip Kumar & Ghadi, Mojtaba Jabbari & Li, Li & Zhang, Jiangfeng & Hossain, M.J., 2022. "Active distribution system resilience quantification and enhancement through multi-microgrid and mobile energy storage," Applied Energy, Elsevier, vol. 311(C).
    3. Qin, Chao & Zhong, Chongyu & Sun, Bing & Jin, Xiaolong & Zeng, Yuan, 2023. "A tri-level optimal defense method against coordinated cyber-physical attacks considering full substation topology," Applied Energy, Elsevier, vol. 339(C).
    4. Solat, Amirhossein & Gharehpetian, G.B. & Naderi, Mehdi Salay & Anvari-Moghaddam, Amjad, 2024. "On the control of microgrids against cyber-attacks: A review of methods and applications," Applied Energy, Elsevier, vol. 353(PA).
    5. Naderi, Mobin & Khayat, Yousef & Shafiee, Qobad & Blaabjerg, Frede & Bevrani, Hassan, 2023. "Dynamic modeling, stability analysis and control of interconnected microgrids: A review," Applied Energy, Elsevier, vol. 334(C).
    6. Zhou, Liwei & Preindl, Matthias, 2023. "Reconfigurable hybrid micro-grid with standardized power module for high performance energy conversion," Applied Energy, Elsevier, vol. 351(C).
    7. Wang, Xiaobo & Huang, Wentao & Li, Ran & Tai, Nengling & Zong, Ming, 2023. "Frequency-based demand side response considering the discontinuity of the ToU tariff," Applied Energy, Elsevier, vol. 348(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinghua Liu & Siwei Qiao & Zhiwei Liu, 2023. "A Survey on Load Frequency Control of Multi-Area Power Systems: Recent Challenges and Strategies," Energies, MDPI, vol. 16(5), pages 1-22, February.
    2. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    3. Agbodoh-Falschau, Kouassi Raymond & Ravaonorohanta, Bako Harinivo, 2023. "Investigating the influence of governance determinants on reporting cybersecurity incidents to police: Evidence from Canadian organizations’ perspectives," Technology in Society, Elsevier, vol. 74(C).
    4. Zhenghao Wang & Yonghui Liu & Zihao Yang & Wanhao Yang, 2021. "Load Frequency Control of Multi-Region Interconnected Power Systems with Wind Power and Electric Vehicles Based on Sliding Mode Control," Energies, MDPI, vol. 14(8), pages 1-15, April.
    5. Yao He & Changchang Miao & Ji Wu & Xinxin Zheng & Xintian Liu & Xingtao Liu & Feng Han, 2021. "Research on the Power Distribution Method for Hybrid Power System in the Fuel Cell Vehicle," Energies, MDPI, vol. 14(3), pages 1-15, January.
    6. Daraz, Amil, 2023. "Optimized cascaded controller for frequency stabilization of marine microgrid system," Applied Energy, Elsevier, vol. 350(C).
    7. Wang, Yujie & Sun, Zhendong & Chen, Zonghai, 2019. "Energy management strategy for battery/supercapacitor/fuel cell hybrid source vehicles based on finite state machine," Applied Energy, Elsevier, vol. 254(C).
    8. Waseem, Muhammad & Lin, Zhenzhi & Liu, Shengyuan & Zhang, Zhi & Aziz, Tarique & Khan, Danish, 2021. "Fuzzy compromised solution-based novel home appliances scheduling and demand response with optimal dispatch of distributed energy resources," Applied Energy, Elsevier, vol. 290(C).
    9. Oshnoei, Soroush & Aghamohammadi, Mohammad Reza & Oshnoei, Siavash & Sahoo, Subham & Fathollahi, Arman & Khooban, Mohammad Hasan, 2023. "A novel virtual inertia control strategy for frequency regulation of islanded microgrid using two-layer multiple model predictive control," Applied Energy, Elsevier, vol. 343(C).
    10. Yang, Jin & Zhong, Qishui & Ghias, Amer M.Y.M. & Dong, Zhao Yang & Shi, Kaibo & Yu, Yongbin, 2023. "Distributed fault-tolerant PI load frequency control for power system under stochastic event-triggered scheme," Applied Energy, Elsevier, vol. 351(C).
    11. Miłosz Stypiński & Marcin Niemiec, 2023. "Security of Neural Network-Based Key Agreement Protocol for Smart Grids," Energies, MDPI, vol. 16(10), pages 1-11, May.
    12. Félix Dubuisson & Miloud Rezkallah & Hussein Ibrahim & Ambrish Chandra, 2021. "Real-Time Implementation of the Predictive-Based Control with Bacterial Foraging Optimization Technique for Power Management in Standalone Microgrid Application," Energies, MDPI, vol. 14(6), pages 1-15, March.
    13. López-Ibarra, Jon Ander & Gaztañaga, Haizea & Saez-de-Ibarra, Andoni & Camblong, Haritza, 2020. "Plug-in hybrid electric buses total cost of ownership optimization at fleet level based on battery aging," Applied Energy, Elsevier, vol. 280(C).
    14. Quan, Shengwei & Wang, Ya-Xiong & Xiao, Xuelian & He, Hongwen & Sun, Fengchun, 2021. "Feedback linearization-based MIMO model predictive control with defined pseudo-reference for hydrogen regulation of automotive fuel cells," Applied Energy, Elsevier, vol. 293(C).
    15. Chen, Chunyu & Cui, Mingjian & Fang, Xin & Ren, Bixing & Chen, Yang, 2020. "Load altering attack-tolerant defense strategy for load frequency control system," Applied Energy, Elsevier, vol. 280(C).
    16. Shangguan, Xing-Chen & He, Yong & Zhang, Chuan-Ke & Jiang, Lin & Wu, Min, 2022. "Load frequency control of time-delayed power system based on event-triggered communication scheme," Applied Energy, Elsevier, vol. 308(C).
    17. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    18. Bizon, Nicu, 2019. "Fuel saving strategy using real-time switching of the fueling regulators in the proton exchange membrane fuel cell system," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    19. Alessandro Serpi & Mario Porru, 2019. "Modelling and Design of Real-Time Energy Management Systems for Fuel Cell/Battery Electric Vehicles," Energies, MDPI, vol. 12(22), pages 1-21, November.
    20. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:306:y:2022:i:pa:s0306261921013453. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.