IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i5p2323-d1083471.html
   My bibliography  Save this article

A Survey on Load Frequency Control of Multi-Area Power Systems: Recent Challenges and Strategies

Author

Listed:
  • Xinghua Liu

    (School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Siwei Qiao

    (School of Electrical Engineering, Xi’an University of Technology, Xi’an 710048, China)

  • Zhiwei Liu

    (School of Automation, Huazhong University of Science and Technology, Wuhan 430074, China
    Key Laboratory of Image Processing and Intelligent Control of Education Ministry of China, Wuhan 430074, China)

Abstract

Load frequency control (LFC) is well known for balancing the load demand and frequency for a multi-area power system. Studies have proven that LFC can improve the global performance of multi-area power systems. In recent years, the increasing proportion of renewable energy, integration of EVs, and cyber-attacks have become the main challenges in LFC power systems. Different strategies have been applied in the literature for LFC power systems and the possible impacts of renewable energy, EVs, and cyber-attacks. This survey paper is devoted to the research on directions in LFC multi-area power systems. The mathematical model of recent challenges in LFC multi-area power systems is summarized and the similarities and differences of these challenges are analyzed. The uncertainty of renewable energy is a frequently noted issue in LFC power systems; however, the uncertainty that exists in controller design is often ignored. In this survey, we analyze methods for treating the uncertainty of renewable energy and controller. This survey paper introduces the most recent research on LFC and acquaints anyone interested in its development, such that the most effective strategies can be developed by the researchers.

Suggested Citation

  • Xinghua Liu & Siwei Qiao & Zhiwei Liu, 2023. "A Survey on Load Frequency Control of Multi-Area Power Systems: Recent Challenges and Strategies," Energies, MDPI, vol. 16(5), pages 1-22, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2323-:d:1083471
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/5/2323/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/5/2323/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gaber Magdy & Abualkasim Bakeer & Morsy Nour & Eduard Petlenkov, 2020. "A New Virtual Synchronous Generator Design Based on the SMES System for Frequency Stability of Low-Inertia Power Grids," Energies, MDPI, vol. 13(21), pages 1-17, October.
    2. Wang, Dongji & Chen, Fei & Meng, Bo & Hu, Xingliu & Wang, Jing, 2021. "Event-based secure H∞ load frequency control for delayed power systems subject to deception attacks," Applied Mathematics and Computation, Elsevier, vol. 394(C).
    3. Zhenghao Wang & Yonghui Liu & Zihao Yang & Wanhao Yang, 2021. "Load Frequency Control of Multi-Region Interconnected Power Systems with Wind Power and Electric Vehicles Based on Sliding Mode Control," Energies, MDPI, vol. 14(8), pages 1-15, April.
    4. Szinai, Julia K. & Sheppard, Colin J.R. & Abhyankar, Nikit & Gopal, Anand R., 2020. "Reduced grid operating costs and renewable energy curtailment with electric vehicle charge management," Energy Policy, Elsevier, vol. 136(C).
    5. Mokhtar Shouran & Fatih Anayi & Michael Packianather, 2021. "The Bees Algorithm Tuned Sliding Mode Control for Load Frequency Control in Two-Area Power System," Energies, MDPI, vol. 14(18), pages 1-29, September.
    6. Wu, Wei & Lin, Boqiang, 2021. "Benefits of electric vehicles integrating into power grid," Energy, Elsevier, vol. 224(C).
    7. Li, Jiawen & Yu, Tao & Zhang, Xiaoshun, 2022. "Coordinated load frequency control of multi-area integrated energy system using multi-agent deep reinforcement learning," Applied Energy, Elsevier, vol. 306(PA).
    8. Milan Joshi & Gulshan Sharma & Pitshou N. Bokoro & Narayanan Krishnan, 2022. "A Fuzzy-PSO-PID with UPFC-RFB Solution for an LFC of an Interlinked Hydro Power System," Energies, MDPI, vol. 15(13), pages 1-17, July.
    9. Athira M. Mohan & Nader Meskin & Hasan Mehrjerdi, 2020. "A Comprehensive Review of the Cyber-Attacks and Cyber-Security on Load Frequency Control of Power Systems," Energies, MDPI, vol. 13(15), pages 1-33, July.
    10. Ahmed Ginidi & Sherif M. Ghoneim & Abdallah Elsayed & Ragab El-Sehiemy & Abdullah Shaheen & Attia El-Fergany, 2021. "Gorilla Troops Optimizer for Electrically Based Single and Double-Diode Models of Solar Photovoltaic Systems," Sustainability, MDPI, vol. 13(16), pages 1-28, August.
    11. Hamid Chojaa & Aziz Derouich & Mohammed Taoussi & Seif Eddine Chehaidia & Othmane Zamzoum & Mohamed I. Mosaad & Ayman Alhejji & Mourad Yessef, 2022. "Nonlinear Control Strategies for Enhancing the Performance of DFIG-Based WECS under a Real Wind Profile," Energies, MDPI, vol. 15(18), pages 1-23, September.
    12. Reza Alayi & Farhad Zishan & Seyed Reza Seyednouri & Ravinder Kumar & Mohammad Hossein Ahmadi & Mohsen Sharifpur, 2021. "Optimal Load Frequency Control of Island Microgrids via a PID Controller in the Presence of Wind Turbine and PV," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    13. Shang-Guan, Xingchen & He, Yong & Zhang, Chuanke & Jiang, Lin & Spencer, Joseph William & Wu, Min, 2020. "Sampled-data based discrete and fast load frequency control for power systems with wind power," Applied Energy, Elsevier, vol. 259(C).
    14. Mohammed Ozayr Abdul Kader & Kayode Timothy Akindeji & Gulshan Sharma, 2022. "A Novel Solution for Solving the Frequency Regulation Problem of Renewable Interlinked Power System Using Fusion of AI," Energies, MDPI, vol. 15(9), pages 1-19, May.
    15. Siwei Qiao & Xinghua Liu & Gaoxi Xiao & Shuzhi Sam Ge & Chih-Chiang Chen, 2021. "Observer-Based Sliding Mode Load Frequency Control of Power Systems under Deception Attack," Complexity, Hindawi, vol. 2021, pages 1-11, October.
    16. Azizi, Askar & Nourisola, Hamid & Shoja-Majidabad, Sajjad, 2019. "Fault tolerant control of wind turbines with an adaptive output feedback sliding mode controller," Renewable Energy, Elsevier, vol. 135(C), pages 55-65.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ashraf K. Abdelaal & Mohamed A. El-Hameed, 2024. "Application of Robust Super Twisting to Load Frequency Control of a Two-Area System Comprising Renewable Energy Resources," Sustainability, MDPI, vol. 16(13), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Naser Azim Mohseni & Navid Bayati, 2022. "Robust Multi-Objective H 2 /H ∞ Load Frequency Control of Multi-Area Interconnected Power Systems Using TS Fuzzy Modeling by Considering Delay and Uncertainty," Energies, MDPI, vol. 15(15), pages 1-18, July.
    2. Bashar Abbas Fadheel & Noor Izzri Abdul Wahab & Ali Jafer Mahdi & Manoharan Premkumar & Mohd Amran Bin Mohd Radzi & Azura Binti Che Soh & Veerapandiyan Veerasamy & Andrew Xavier Raj Irudayaraj, 2023. "A Hybrid Grey Wolf Assisted-Sparrow Search Algorithm for Frequency Control of RE Integrated System," Energies, MDPI, vol. 16(3), pages 1-28, January.
    3. Khanna, Tarun M., 2022. "Using agricultural demand for reducing costs of renewable energy integration in India," Energy, Elsevier, vol. 254(PC).
    4. Amr Saleh & Hany M. Hasanien & Rania A. Turky & Balgynbek Turdybek & Mohammed Alharbi & Francisco Jurado & Walid A. Omran, 2023. "Optimal Model Predictive Control for Virtual Inertia Control of Autonomous Microgrids," Sustainability, MDPI, vol. 15(6), pages 1-25, March.
    5. Mishra, Dillip Kumar & Ray, Prakash Kumar & Li, Li & Zhang, Jiangfeng & Hossain, M.J. & Mohanty, Asit, 2022. "Resilient control based frequency regulation scheme of isolated microgrids considering cyber attack and parameter uncertainties," Applied Energy, Elsevier, vol. 306(PA).
    6. Tengfei Weng & Yan Xie & Guorong Chen & Qi Han & Yuan Tian & Liping Feng & Yangjun Pei, 2022. "Load frequency control under false data inject attacks based on multi-agent system method in multi-area power systems," International Journal of Distributed Sensor Networks, , vol. 18(4), pages 15501329221, April.
    7. Powell, Siobhan & Vianna Cezar, Gustavo & Apostolaki-Iosifidou, Elpiniki & Rajagopal, Ram, 2022. "Large-scale scenarios of electric vehicle charging with a data-driven model of control," Energy, Elsevier, vol. 248(C).
    8. Dong Zhao & Shuyan Sun & Ardashir Mohammadzadeh & Amir Mosavi, 2022. "Adaptive Intelligent Model Predictive Control for Microgrid Load Frequency," Sustainability, MDPI, vol. 14(18), pages 1-14, September.
    9. Zapata, Sebastian & Castaneda, Monica & Aristizabal, Andres J. & Dyner, Isaac, 2022. "Renewables for supporting supply adequacy in Colombia," Energy, Elsevier, vol. 239(PC).
    10. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    11. Ashraf K. Abdelaal & Elshahat F. Mohamed & Attia A. El-Fergany, 2022. "Optimal Scheduling of Hybrid Sustainable Energy Microgrid: A Case Study for a Resort in Sokhna, Egypt," Sustainability, MDPI, vol. 14(19), pages 1-13, October.
    12. Timo Kern & Patrick Dossow & Serafin von Roon, 2020. "Integrating Bidirectionally Chargeable Electric Vehicles into the Electricity Markets," Energies, MDPI, vol. 13(21), pages 1-30, November.
    13. Mohammad R. Altimania & Nadia A. Elsonbaty & Mohamed A. Enany & Mahmoud M. Gamil & Saeed Alzahrani & Musfer Hasan Alraddadi & Ruwaybih Alsulami & Mohammad Alhartomi & Moahd Alghuson & Fares Alatawi & , 2023. "Optimal Performance of Photovoltaic-Powered Water Pumping System," Mathematics, MDPI, vol. 11(3), pages 1-21, February.
    14. Rafiq Asghar & Francesco Riganti Fulginei & Hamid Wadood & Sarmad Saeed, 2023. "A Review of Load Frequency Control Schemes Deployed for Wind-Integrated Power Systems," Sustainability, MDPI, vol. 15(10), pages 1-29, May.
    15. Cheng, Yi & Azizipanah-Abarghooee, Rasoul & Azizi, Sadegh & Ding, Lei & Terzija, Vladimir, 2020. "Smart frequency control in low inertia energy systems based on frequency response techniques: A review," Applied Energy, Elsevier, vol. 279(C).
    16. Yun, Lingxiang & Xiao, Minkun & Li, Lin, 2022. "Vehicle-to-manufacturing (V2M) system: A novel approach to improve energy demand flexibility for demand response towards sustainable manufacturing," Applied Energy, Elsevier, vol. 323(C).
    17. Agbodoh-Falschau, Kouassi Raymond & Ravaonorohanta, Bako Harinivo, 2023. "Investigating the influence of governance determinants on reporting cybersecurity incidents to police: Evidence from Canadian organizations’ perspectives," Technology in Society, Elsevier, vol. 74(C).
    18. Nagel, Niels Oliver & Jåstad, Eirik Ogner & Martinsen, Thomas, 2024. "The grid benefits of vehicle-to-grid in Norway and Denmark: An analysis of home- and public parking potentials," Energy, Elsevier, vol. 293(C).
    19. Soomin Woo & Zhe Fu & Elpiniki Apostolaki-Iosifidou & Timothy E. Lipman, 2021. "Economic and Environmental Benefits for Electricity Grids from Spatiotemporal Optimization of Electric Vehicle Charging," Energies, MDPI, vol. 14(24), pages 1-22, December.
    20. Zhenghao Wang & Yonghui Liu & Zihao Yang & Wanhao Yang, 2021. "Load Frequency Control of Multi-Region Interconnected Power Systems with Wind Power and Electric Vehicles Based on Sliding Mode Control," Energies, MDPI, vol. 14(8), pages 1-15, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:5:p:2323-:d:1083471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.