IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v285y2021ics0306261921000374.html
   My bibliography  Save this article

Co-gasification of high-density polyethylene and pretreated pine wood

Author

Listed:
  • Li, Jinhu
  • Burra, Kiran Raj G.
  • Wang, Zhiwei
  • Liu, Xuan
  • Gupta, Ashwani K.

Abstract

Co-gasification of biomass and plastic blends has been extensively studied, however the effect of AAEMs (alkali and alkaline earth metals) in biomass on the co-gasification behavior still remains unknown. Acid and alkali pretreatment were used here to remove or introduce the AAEMs in biomass by ion-exchange method. SEM was used to obtain morphological characteristics of three pretreated pine wood (PW) samples; TG analysis of pure and blend feedstocks was used to examine the decomposition behavior. CO2 assisted co-gasification of high-density polyethylene (HDPE) and pretreated PW samples at different blend ratios were conducted in a fixed bed reactor, and the resulting flow rate and yields of H2, CO, light hydrocarbons (HC), total syngas, and output energy determined. Synergetic effects from these blends during co-gasification were evaluated by comparing the experimental results with the weighted results from individual components. Results showed that the presence of AAEMs in biomass resulted in increased char yield and char reactivity, that enhanced the syngas yield and energy output. However, acid pretreatment with low AAEM content showed the opposite trend. Irrespective of the biomass pretreatment, synergistic effect was found in the yield of each syngas component, total syngas, and energy yield during its co-gasification with HDPE plastic. The synergy during co-gasification of HDPE and alkali treated PW was more pronounced at high PW content, while those from acid pretreatment preferred low PW fraction. The highest energy yields of 28.1, 34.3 and 30.1 kJ/g were obtained from co-gasification of HDPE and water, acid and alkali pretreated PW samples at PW fraction of 44%, 22% and 55%, respectively. Maximum synergistic effect with energy yield of 69% was obtained from the gasification of HDPE and acid pretreated PW at 27% PW fraction. These results help to our understanding of the influence of biomass pretreatment on co-gasification of biomass-plastic mixtures. The results also help to achieve relatively stable energy output for varying mixtures of plastic and biomass.

Suggested Citation

  • Li, Jinhu & Burra, Kiran Raj G. & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2021. "Co-gasification of high-density polyethylene and pretreated pine wood," Applied Energy, Elsevier, vol. 285(C).
  • Handle: RePEc:eee:appene:v:285:y:2021:i:c:s0306261921000374
    DOI: 10.1016/j.apenergy.2021.116472
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921000374
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116472?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Luo, Siyi & Zhou, Yangmin & Yi, Chuijie, 2012. "Syngas production by catalytic steam gasification of municipal solid waste in fixed-bed reactor," Energy, Elsevier, vol. 44(1), pages 391-395.
    2. Jeong, Yong-Seong & Park, Ki-Bum & Kim, Joo-Sik, 2020. "Hydrogen production from steam gasification of polyethylene using a two-stage gasifier and active carbon," Applied Energy, Elsevier, vol. 262(C).
    3. Lahijani, Pooya & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2019. "Investigation of synergism and kinetic analysis during CO2 co-gasification of scrap tire char and agro-wastes," Renewable Energy, Elsevier, vol. 142(C), pages 147-157.
    4. Wang, Kaige & Zhang, Jing & Shanks, Brent H. & Brown, Robert C., 2015. "The deleterious effect of inorganic salts on hydrocarbon yields from catalytic pyrolysis of lignocellulosic biomass and its mitigation," Applied Energy, Elsevier, vol. 148(C), pages 115-120.
    5. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    6. Moghadam, Reza Alipour & Yusup, Suzana & Uemura, Yoshimitsu & Chin, Bridgid Lai Fui & Lam, Hon Loong & Al Shoaibi, Ahmed, 2014. "Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process," Energy, Elsevier, vol. 75(C), pages 40-44.
    7. Zhang, Ziyin & Pang, Shusheng & Levi, Tana, 2017. "Influence of AAEM species in coal and biomass on steam co-gasification of chars of blended coal and biomass," Renewable Energy, Elsevier, vol. 101(C), pages 356-363.
    8. Bhoi, Prakashbhai R. & Huhnke, Raymond L. & Kumar, Ajay & Indrawan, Natarianto & Thapa, Sunil, 2018. "Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier," Energy, Elsevier, vol. 163(C), pages 513-518.
    9. Ahmed, I.I. & Nipattummakul, N. & Gupta, A.K., 2011. "Characteristics of syngas from co-gasification of polyethylene and woodchips," Applied Energy, Elsevier, vol. 88(1), pages 165-174, January.
    10. Burra, K.G. & Hussein, M.S. & Amano, R.S. & Gupta, A.K., 2016. "Syngas evolutionary behavior during chicken manure pyrolysis and air gasification," Applied Energy, Elsevier, vol. 181(C), pages 408-415.
    11. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    12. Yu, Haimiao & Wu, Zilu & Chen, Geng, 2018. "Catalytic gasification characteristics of cellulose, hemicellulose and lignin," Renewable Energy, Elsevier, vol. 121(C), pages 559-567.
    13. Popp, J. & Lakner, Z. & Harangi-Rákos, M. & Fári, M., 2014. "The effect of bioenergy expansion: Food, energy, and environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 559-578.
    14. Chiaramonti, David & Prussi, Matteo & Buffi, Marco & Rizzo, Andrea Maria & Pari, Luigi, 2017. "Review and experimental study on pyrolysis and hydrothermal liquefaction of microalgae for biofuel production," Applied Energy, Elsevier, vol. 185(P2), pages 963-972.
    15. Déparrois, N. & Singh, P. & Burra, K.G. & Gupta, A.K., 2019. "Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2," Applied Energy, Elsevier, vol. 246(C), pages 1-10.
    16. Burra, K.G. & Gupta, A.K., 2018. "Synergistic effects in steam gasification of combined biomass and plastic waste mixtures," Applied Energy, Elsevier, vol. 211(C), pages 230-236.
    17. Cho, Min-Hwan & Choi, Young-Kon & Kim, Joo-Sik, 2015. "Air gasification of PVC (polyvinyl chloride)-containing plastic waste in a two-stage gasifier using Ca-based additives and Ni-loaded activated carbon for the production of clean and hydrogen-rich prod," Energy, Elsevier, vol. 87(C), pages 586-593.
    18. Wang, Zhiwei & Burra, Kiran G. & Zhang, Mengju & Li, Xueqin & He, Xiaofeng & Lei, Tingzhou & Gupta, Ashwani K., 2020. "Syngas evolution and energy efficiency in CO2-assisted gasification of pine bark," Applied Energy, Elsevier, vol. 269(C).
    19. Ng, Wei Cheng & You, Siming & Ling, Ran & Gin, Karina Yew-Hoong & Dai, Yanjun & Wang, Chi-Hwa, 2017. "Co-gasification of woody biomass and chicken manure: Syngas production, biochar reutilization, and cost-benefit analysis," Energy, Elsevier, vol. 139(C), pages 732-742.
    20. Wei, Juntao & Gong, Yan & Guo, Qinghua & Chen, Xueli & Ding, Lu & Yu, Guangsuo, 2019. "A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals," Renewable Energy, Elsevier, vol. 131(C), pages 597-605.
    21. Sophonrat, Nanta & Sandström, Linda & Zaini, Ilman Nuran & Yang, Weihong, 2018. "Stepwise pyrolysis of mixed plastics and paper for separation of oxygenated and hydrocarbon condensates," Applied Energy, Elsevier, vol. 229(C), pages 314-325.
    22. Zhang, Yayun & Duan, Dengle & Lei, Hanwu & Villota, Elmar & Ruan, Roger, 2019. "Jet fuel production from waste plastics via catalytic pyrolysis with activated carbons," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    23. Wei, Juntao & Guo, Qinghua & Ding, Lu & Yoshikawa, Kunio & Yu, Guangsuo, 2017. "Synergy mechanism analysis of petroleum coke and municipal solid waste (MSW)-derived hydrochar co-gasification," Applied Energy, Elsevier, vol. 206(C), pages 1354-1363.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qian & Sun, Jianguo & Gu, Yonghua & Zhong, Wenqi & Gao, Ke, 2024. "Experimental study on CO2 co-gasification characteristics of biomass and waste plastics: Insight into interaction and targeted regulation method," Energy, Elsevier, vol. 292(C).
    2. Lucio Zaccariello & Maria Laura Mastellone, 2023. "Fuel Gas Production from the Co-Gasification of Coal, Plastic Waste, and Wood in a Fluidized Bed Reactor: Effect of Gasifying Agent and Bed Material," Sustainability, MDPI, vol. 15(9), pages 1-19, May.
    3. Li, Zhuoyu & Dai, Huaming & Zhai, Cheng, 2024. "Integrated porous self-sustaining combustion of inert pellets and reactive wood lamellae with additives: Dynamic co-production method for heat and hydrogen," Energy, Elsevier, vol. 303(C).
    4. Ajorloo, Mojtaba & Ghodrat, Maryam & Scott, Jason & Strezov, Vladimir, 2022. "Modelling and statistical analysis of plastic biomass mixture co-gasification," Energy, Elsevier, vol. 256(C).
    5. Tian, Beile & Mao, Songbo & Guo, Feiqiang & Bai, Jiaming & Shu, Rui & Qian, Lin & Liu, Qi, 2022. "Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming," Energy, Elsevier, vol. 242(C).
    6. Li, Jinhu & Ye, Xinhao & Burra, Kiran G. & Lu, Wei & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2023. "Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene," Applied Energy, Elsevier, vol. 336(C).
    7. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Zeng, Mingxun & Ge, Zefeng & Wu, Yuqing & Ma, Yuna & Zha, Zhenting & Hou, Zenghui & Zhang, Huiyan, 2024. "Energy utilization of takeaway waste: Components separation and fuel preparation employing hydrothermal carbonization and gasification," Energy, Elsevier, vol. 299(C).
    9. Aktas, Fatih & Mavukwana, Athi-enkosi & Burra, Kiran Raj Goud & Gupta, Ashwani K., 2024. "Role of spent FCC catalyst in pyrolysis and CO2-assisted gasification of pinewood," Applied Energy, Elsevier, vol. 366(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Liu, Qian & Sun, Jianguo & Gu, Yonghua & Zhong, Wenqi & Gao, Ke, 2024. "Experimental study on CO2 co-gasification characteristics of biomass and waste plastics: Insight into interaction and targeted regulation method," Energy, Elsevier, vol. 292(C).
    3. Liu, Xuan & Burra, Kiran G. & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2020. "On deconvolution for understanding synergistic effects in co-pyrolysis of pinewood and polypropylene," Applied Energy, Elsevier, vol. 279(C).
    4. Ong, Hwai Chyuan & Chen, Wei-Hsin & Farooq, Abid & Gan, Yong Yang & Lee, Keat Teong & Ashokkumar, Veeramuthu, 2019. "Catalytic thermochemical conversion of biomass for biofuel production: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    5. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    6. Aktas, Fatih & Mavukwana, Athi-enkosi & Burra, Kiran Raj Goud & Gupta, Ashwani K., 2024. "Role of spent FCC catalyst in pyrolysis and CO2-assisted gasification of pinewood," Applied Energy, Elsevier, vol. 366(C).
    7. Li, Jinhu & Ye, Xinhao & Burra, Kiran G. & Lu, Wei & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2023. "Synergistic effects during co-pyrolysis and co-gasification of polypropylene and polystyrene," Applied Energy, Elsevier, vol. 336(C).
    8. Burra, Kiran Raj G. & Liu, Xuan & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2021. "Quantifying the sources of synergistic effects in co-pyrolysis of pinewood and polystyrene," Applied Energy, Elsevier, vol. 302(C).
    9. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    10. Fazil, A. & Kumar, Sandeep & Mahajani, Sanjay M., 2022. "Downdraft co-gasification of high ash biomass and plastics," Energy, Elsevier, vol. 243(C).
    11. Ajorloo, Mojtaba & Ghodrat, Maryam & Scott, Jason & Strezov, Vladimir, 2022. "Modelling and statistical analysis of plastic biomass mixture co-gasification," Energy, Elsevier, vol. 256(C).
    12. Déparrois, N. & Singh, P. & Burra, K.G. & Gupta, A.K., 2019. "Syngas production from co-pyrolysis and co-gasification of polystyrene and paper with CO2," Applied Energy, Elsevier, vol. 246(C), pages 1-10.
    13. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    15. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
    16. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    17. Chen, Guan-Bang & Chang, Chung-Yu, 2024. "Co-gasification of waste shiitake substrate and waste polyethylene in a fluidized bed reactor under CO2/steam atmospheres," Energy, Elsevier, vol. 289(C).
    18. Despina Vamvuka & Petros Tsilivakos, 2024. "Energy Recovery from Municipal Solid Waste through Co-Gasification Using Steam or Carbon Dioxide with Olive By-Products," Energies, MDPI, vol. 17(2), pages 1-13, January.
    19. Jeong, Yong-Seong & Kim, Jong-Woo & Seo, Myung-Won & Mun, Tae-Young & Kim, Joo-Sik, 2021. "Characteristics of two-stage air gasification of polystyrene with active carbon as a tar removal agent," Energy, Elsevier, vol. 219(C).
    20. Parrillo, Francesco & Ardolino, Filomena & Boccia, Carmine & Calì, Gabriele & Marotto, Davide & Pettinau, Alberto & Arena, Umberto, 2023. "Co-gasification of plastics waste and biomass in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:285:y:2021:i:c:s0306261921000374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.