IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v292y2024ics0360544224002809.html
   My bibliography  Save this article

Experimental study on CO2 co-gasification characteristics of biomass and waste plastics: Insight into interaction and targeted regulation method

Author

Listed:
  • Liu, Qian
  • Sun, Jianguo
  • Gu, Yonghua
  • Zhong, Wenqi
  • Gao, Ke

Abstract

The CO2 gasification of biomass and waste plastics is one of the essential ways to utilize solid waste resources, and it is also potential negative carbon emission technology. The complex interactions in the co-gasification of biomass and waste plastics affect the quality of syngas and the efficient conversion of solid waste. In this study, sawdust, PE and PVC were selected for CO2 gasification. Firstly, the interaction and gasification characteristics were investigated by thermogravimetric experiments. Then, the impact of interaction on syngas generation and quality was studied through fluidized bed experiments. The results indicated that PE, PVC, and sawdust co-gasification exhibits both inhibitory and synergistic. PE inhibits the release of volatiles in sawdust, while PVC promotes the volatiles release. In short, PVC improves the gasification reactivity of sawdust, and PE enhances syngas quality. Adding 75 % PE, the syngas Low Heating Value by 415 % up to 30.05 MJ/kg, and Cold Gas Efficiency by 147 %. The synergistic of the sawdust/PE-PVC was manifested as the superposition and amplification of the synergistic in sawdust/PE and sawdust/PVC. Adjusting the PE and PVC proportion, syngas quality can be targeted to control. The study results exhibit new perspectives on classifying waste plastics for gasification and regulating syngas quality.

Suggested Citation

  • Liu, Qian & Sun, Jianguo & Gu, Yonghua & Zhong, Wenqi & Gao, Ke, 2024. "Experimental study on CO2 co-gasification characteristics of biomass and waste plastics: Insight into interaction and targeted regulation method," Energy, Elsevier, vol. 292(C).
  • Handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002809
    DOI: 10.1016/j.energy.2024.130509
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544224002809
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.130509?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Teng & Yao, Zonglu & Huo, Lili & Jia, Jixiu & Zhang, Peizhen & Tian, Liwei & Zhao, Lixin, 2023. "Characteristics of biochar derived from the co-pyrolysis of corn stalk and mulch film waste," Energy, Elsevier, vol. 262(PB).
    2. Diao, Rui & Li, Shanshan & Deng, Jingjing & Zhu, Xifeng, 2021. "Interaction and kinetic analysis of co-gasification of bituminous coal with walnut shell under CO2 atmosphere: Effect of inorganics and carbon structures," Renewable Energy, Elsevier, vol. 173(C), pages 177-187.
    3. Ge, Lichao & Zhao, Can & Zuo, Mingjin & Du, Yuying & Yao, Lei & Li, Dongyang & Chu, Huaqiang & Wang, Yang & Xu, Chang, 2023. "Effect of Fe on the pyrolysis products of lignin, cellulose and hemicellulose, and the formation of carbon nanotubes," Renewable Energy, Elsevier, vol. 211(C), pages 13-20.
    4. Zhou, Chunguang & Rosén, Christer & Engvall, Klas, 2016. "Biomass oxygen/steam gasification in a pressurized bubbling fluidized bed: Agglomeration behavior," Applied Energy, Elsevier, vol. 172(C), pages 230-250.
    5. Lahijani, Pooya & Mohammadi, Maedeh & Mohamed, Abdul Rahman, 2019. "Investigation of synergism and kinetic analysis during CO2 co-gasification of scrap tire char and agro-wastes," Renewable Energy, Elsevier, vol. 142(C), pages 147-157.
    6. Burra, K.G. & Gupta, A.K., 2018. "Synergistic effects in steam gasification of combined biomass and plastic waste mixtures," Applied Energy, Elsevier, vol. 211(C), pages 230-236.
    7. Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
    8. Li, Jinhu & Burra, Kiran Raj G. & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2021. "Co-gasification of high-density polyethylene and pretreated pine wood," Applied Energy, Elsevier, vol. 285(C).
    9. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    10. Moghadam, Reza Alipour & Yusup, Suzana & Uemura, Yoshimitsu & Chin, Bridgid Lai Fui & Lam, Hon Loong & Al Shoaibi, Ahmed, 2014. "Syngas production from palm kernel shell and polyethylene waste blend in fluidized bed catalytic steam co-gasification process," Energy, Elsevier, vol. 75(C), pages 40-44.
    11. Hu, Yisheng & Pang, Kang & Cai, Longhao & Liu, Zhibin, 2021. "A multi-stage co-gasification system of biomass and municipal solid waste (MSW) for high quality syngas production," Energy, Elsevier, vol. 221(C).
    12. Oyedun, Adetoyese Olajire & Gebreegziabher, Tesfaldet & Ng, Denny K.S. & Hui, Chi Wai, 2014. "Mixed-waste pyrolysis of biomass and plastics waste – A modelling approach to reduce energy usage," Energy, Elsevier, vol. 75(C), pages 127-135.
    13. Shahbaz, Muhammad & Al-Ansari, Tareq & Inayat, Muddasser & Sulaiman, Shaharin A. & Parthasarathy, Prakash & McKay, Gordon, 2020. "A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    14. Nobre, Catarina & Longo, Andrei & Vilarinho, Cândida & Gonçalves, Margarida, 2020. "Gasification of pellets produced from blends of biomass wastes and refuse derived fuel chars," Renewable Energy, Elsevier, vol. 154(C), pages 1294-1303.
    15. Bhoi, Prakashbhai R. & Huhnke, Raymond L. & Kumar, Ajay & Indrawan, Natarianto & Thapa, Sunil, 2018. "Co-gasification of municipal solid waste and biomass in a commercial scale downdraft gasifier," Energy, Elsevier, vol. 163(C), pages 513-518.
    16. Ahmed, I.I. & Nipattummakul, N. & Gupta, A.K., 2011. "Characteristics of syngas from co-gasification of polyethylene and woodchips," Applied Energy, Elsevier, vol. 88(1), pages 165-174, January.
    17. Chen, Liangzhou & Qi, Xuyao & Zhang, Yabo & Rao, Yuxuan & Wang, Tao, 2022. "Gasification characteristics and thermodynamic analysis of ultra-lean oxygen oxidized lignite residues," Energy, Elsevier, vol. 240(C).
    18. Xin, Haihui & Tian, Wenjiang & Zhou, Banghao & Qi, Xu-yao & Li, Jianfeng & Wu, Jinfeng & Wang, De-ming, 2023. "Pore structure evolution and oxidation characteristic change of coal treated with liquid carbon dioxide and liquid nitrogen," Energy, Elsevier, vol. 268(C).
    19. Wang, Yu & Ge, Zhiwei & Shang, Fei & Zhou, Chenchen & Guo, Shenghui & Ren, Changyifan, 2023. "Kinetic analysis of CO2 gasification of corn straw," Renewable Energy, Elsevier, vol. 203(C), pages 219-227.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariyam, Sabah & Shahbaz, Muhammad & Al-Ansari, Tareq & Mackey, Hamish. R & McKay, Gordon, 2022. "A critical review on co-gasification and co-pyrolysis for gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Li, Jinhu & Burra, Kiran Raj G. & Wang, Zhiwei & Liu, Xuan & Gupta, Ashwani K., 2021. "Co-gasification of high-density polyethylene and pretreated pine wood," Applied Energy, Elsevier, vol. 285(C).
    3. Sajid, Muhammad & Raheem, Abdul & Ullah, Naeem & Asim, Muhammad & Ur Rehman, Muhammad Saif & Ali, Nisar, 2022. "Gasification of municipal solid waste: Progress, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    4. Ajorloo, Mojtaba & Ghodrat, Maryam & Scott, Jason & Strezov, Vladimir, 2022. "Modelling and statistical analysis of plastic biomass mixture co-gasification," Energy, Elsevier, vol. 256(C).
    5. Fazil, A. & Kumar, Sandeep & Mahajani, Sanjay M., 2022. "Downdraft co-gasification of high ash biomass and plastics," Energy, Elsevier, vol. 243(C).
    6. AlNouss, Ahmed & McKay, Gordon & Al-Ansari, Tareq, 2020. "Enhancing waste to hydrogen production through biomass feedstock blending: A techno-economic-environmental evaluation," Applied Energy, Elsevier, vol. 266(C).
    7. Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
    8. Chavando, José Antonio Mayoral & Silva, Valter Bruno & Tarelho, Luís A.C. & Cardoso, João Sousa & Eusébio, Daniela, 2022. "Snapshot review of refuse-derived fuels," Utilities Policy, Elsevier, vol. 74(C).
    9. Liu, Xuan & Burra, Kiran G. & Wang, Zhiwei & Li, Jinhu & Che, Defu & Gupta, Ashwani K., 2020. "On deconvolution for understanding synergistic effects in co-pyrolysis of pinewood and polypropylene," Applied Energy, Elsevier, vol. 279(C).
    10. Chu, Chu & Wang, Ping & Boré, Abdoulaye & Ma, Wenchao & Chen, Guanyi & Wang, Pan, 2023. "Thermal plasma co-gasification of polyvinylchloride and biomass mixtures under steam atmospheres: Gasification characteristics and chlorine release behavior," Energy, Elsevier, vol. 262(PB).
    11. Aktas, Fatih & Mavukwana, Athi-enkosi & Burra, Kiran Raj Goud & Gupta, Ashwani K., 2024. "Role of spent FCC catalyst in pyrolysis and CO2-assisted gasification of pinewood," Applied Energy, Elsevier, vol. 366(C).
    12. Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
    13. Huang, Jijiang & Veksha, Andrei & Chan, Wei Ping & Giannis, Apostolos & Lisak, Grzegorz, 2022. "Chemical recycling of plastic waste for sustainable material management: A prospective review on catalysts and processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    14. Patrik Šuhaj & Jakub Husár & Juma Haydary, 2020. "Gasification of RDF and Its Components with Tire Pyrolysis Char as Tar-Cracking Catalyst," Sustainability, MDPI, vol. 12(16), pages 1-14, August.
    15. Zaini, Ilman Nuran & Gomez-Rueda, Yamid & García López, Cristina & Ratnasari, Devy Kartika & Helsen, Lieve & Pretz, Thomas & Jönsson, Pär Göran & Yang, Weihong, 2020. "Production of H2-rich syngas from excavated landfill waste through steam co-gasification with biochar," Energy, Elsevier, vol. 207(C).
    16. David Antonio Buentello-Montoya & Miguel Ángel Armenta-Gutiérrez & Victor Manuel Maytorena-Soria, 2023. "Parametric Modelling Study to Determine the Feasibility of the Co-Gasification of Macroalgae and Plastics for the Production of Hydrogen-Rich Syngas," Energies, MDPI, vol. 16(19), pages 1-18, September.
    17. Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
    18. Li, Fenghai & Liu, Quanrun & Li, Meng & Fang, Yitian, 2018. "Understanding fly-ash formation during fluidized-bed gasification of high-silicon-aluminum coal based on its characteristics," Energy, Elsevier, vol. 150(C), pages 142-152.
    19. Despina Vamvuka & Petros Tsilivakos, 2024. "Energy Recovery from Municipal Solid Waste through Co-Gasification Using Steam or Carbon Dioxide with Olive By-Products," Energies, MDPI, vol. 17(2), pages 1-13, January.
    20. Parrillo, Francesco & Ardolino, Filomena & Boccia, Carmine & Calì, Gabriele & Marotto, Davide & Pettinau, Alberto & Arena, Umberto, 2023. "Co-gasification of plastics waste and biomass in a pilot scale fluidized bed reactor," Energy, Elsevier, vol. 273(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:292:y:2024:i:c:s0360544224002809. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.