IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v231y2024ics0960148124010280.html
   My bibliography  Save this article

Experimental analysis of the effects of feedstock composition on the plastic and biomass Co-gasification process

Author

Listed:
  • Ajorloo, Mojtaba
  • Ghodrat, Maryam
  • Scott, Jason
  • Strezov, Vladimir

Abstract

Co-gasification is a feasible approach to manage fast-growing plastic and biomass waste issues. The current work examines air gasification of plastic waste blending with biomass. The influence of plastic-type and biomass characteristics on product distribution under the same operating condition was studied. Ethylene-vinyl acetate, high-density polyethylene, and polypropylene were the investigated plastics while the biomass materials considered were pine sawdust (PS), used ground coffee (UGC), and wheat straw (WS) are compared. Additionally, co-gasification and thermogravimetric analyses (TGA) of plastic and individual biomass components, namely, cellulose, hemicellulose, and lignin, were conducted to identify the nature of the synergy arising from plastic and biomass integration. Similarities in the chemical structure and composition of the investigated plastics resulted in the type of plastic marginally influencing product distribution. The gas composition included 4.6 vol% CH4, 37.5 % CO2, 5.3 % CnHm, 42 % CO, and 10.8 % H2, with yields of 5.9 wt% char, 39.5 wt% gas, and 54.8 wt% tar. Conversely, the type of biomass had a substantial effect on both gas composition and product yields. WS and UGC, characterized by higher hemicellulose and lignin content, generated more hydrogen with 14.4 and 13.3 vol%, respectively, and exhibited lower tar content (45.7 and 47.8 wt%) compared to PS, which has a higher cellulose content and yielded 54.8 wt% tar. During EVA/cellulose co-gasification, the predominant gases produced are CO and CO2, with H2 concentration of 7.2 vol%. In contrast, co-gasification of EVA/xylan and EVA/lignin yields 13.5 and 19.9 vol% hydrogen, respectively. Interactions and synergism between the plastic and biomass were found to be more intensified when the biomass contained greater proportions of cellulose and lignin. Co-gasification and TGA analyses indicated that plastic/cellulose and plastic/lignin interactions in the gas and solid phases (volatile-volatile and volatile-char interactions) and plastic/xylan interactions in the gas phase (volatile-volatile interactions) were significant. Modeling the predictability of the output data revealed that if interactions between the plastic and biomass components are accounted for, the co-gasification results are predictable with a credible accuracy for all biomass types. The predictability model offers a practical approach for selecting an appropriate co-gasification feedstock combination to give a targeted process performance.

Suggested Citation

  • Ajorloo, Mojtaba & Ghodrat, Maryam & Scott, Jason & Strezov, Vladimir, 2024. "Experimental analysis of the effects of feedstock composition on the plastic and biomass Co-gasification process," Renewable Energy, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010280
    DOI: 10.1016/j.renene.2024.120960
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124010280
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120960?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:231:y:2024:i:c:s0960148124010280. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.