IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261920300787.html
   My bibliography  Save this article

Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest

Author

Listed:
  • Cai, Jianchao
  • Xu, Kai
  • Zhu, Yanhui
  • Hu, Fang
  • Li, Liuhuan

Abstract

Carbon balance is essential to keep ecosystems sustainable and healthy. Net ecosystem carbon exchange (NEE), which is affected by a bunch of meteorological variables to different extent, helps to gauge the balance of the carbon cycle between biological organisms and atmosphere. In this study, the NEE data is collected from two flux measuring sites. Gradient boosting regression algorithm is employed to predict NEE based on the meteorology and flux data from site UK-Gri. During the training process, KFold cross-validation algorithm is implemented to avoid overfitting, and random forest algorithm is implemented to identify the important variables influencing NEE mostly. The four most important variables are found to be global radiation, photosynthetic active radiation, minimum soil temperature, and latent heat. The regression model was compared with three state-of-the-art prediction models: support vector machine, stochastic gradient descent, and bayesian ridge to verify its performance. The experimental results show that this regression model outperforms the other three models, and gives higher value of R-squared, lower values of mean absolute error and root mean squared error. To verify the regression model’s generalization ability, the data from the second flux site, NL-Loo, was employed, and the hybrid data of the two sites was used. The results show that this model performs well on the hybrid data, too. In practical terms, the gradient boosting regression model provides many tunable hypterparameters and loss functions, which make it more flexible and accurate compared to the other three models. This study has conclusively demonstrated for the first time that the combination of gradient boosting regression and random forest models should be considered as valuable tools to make effective prediction for NEE and acquire reliable important variables influencing NEE mostly. The methodologies could be useful in the research fields of ecosystem stability evaluation, environmental restoration, trend analysis of climate change, and global warming monitoring.

Suggested Citation

  • Cai, Jianchao & Xu, Kai & Zhu, Yanhui & Hu, Fang & Li, Liuhuan, 2020. "Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300787
    DOI: 10.1016/j.apenergy.2020.114566
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920300787
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114566?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qin, Zhong & Su, Gao-li & Zhang, Jia-en & Ouyang, Ying & Yu, Qiang & Li, Jun, 2010. "Identification of important factors for water vapor flux and CO2 exchange in a cropland," Ecological Modelling, Elsevier, vol. 221(4), pages 575-581.
    2. Xianming Dou & Yongguo Yang & Jinhui Luo, 2018. "Estimating Forest Carbon Fluxes Using Machine Learning Techniques Based on Eddy Covariance Measurements," Sustainability, MDPI, vol. 10(1), pages 1-26, January.
    3. Wen, Xuding & Zhao, Zhonghui & Deng, Xiangwen & Xiang, Wenhua & Tian, Dalun & Yan, Wende & Zhou, Xiaolu & Peng, Changhui, 2014. "Applying an artificial neural network to simulate and predict Chinese fir (Cunninghamia lanceolata) plantation carbon flux in subtropical China," Ecological Modelling, Elsevier, vol. 294(C), pages 19-26.
    4. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    5. Díaz, Guzmán & Coto, José & Gómez-Aleixandre, Javier, 2019. "Prediction and explanation of the formation of the Spanish day-ahead electricity price through machine learning regression," Applied Energy, Elsevier, vol. 239(C), pages 610-625.
    6. Hassan, Muhammed A. & Khalil, A. & Kaseb, S. & Kassem, M.A., 2017. "Exploring the potential of tree-based ensemble methods in solar radiation modeling," Applied Energy, Elsevier, vol. 203(C), pages 897-916.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Christian Mulomba Mukendi & Hyebong Choi & Suhui Jung & Yun-Seon Kim, 2024. "Determinants of Yearly CO 2 Emission Fluctuations: A Machine Learning Perspective to Unveil Dynamics," Sustainability, MDPI, vol. 16(10), pages 1-28, May.
    2. Hung-Ta Wen & Jau-Huai Lu & Deng-Siang Jhang, 2021. "Features Importance Analysis of Diesel Vehicles’ NO x and CO 2 Emission Predictions in Real Road Driving Based on Gradient Boosting Regression Model," IJERPH, MDPI, vol. 18(24), pages 1-28, December.
    3. Yuling Huang & Xiaoping Lu & Chujin Zhou & Yunlin Song, 2023. "DADE-DQN: Dual Action and Dual Environment Deep Q-Network for Enhancing Stock Trading Strategy," Mathematics, MDPI, vol. 11(17), pages 1-27, August.
    4. Deo, Ravinesh C. & Ahmed, A.A. Masrur & Casillas-Pérez, David & Pourmousavi, S. Ali & Segal, Gary & Yu, Yanshan & Salcedo-Sanz, Sancho, 2023. "Cloud cover bias correction in numerical weather models for solar energy monitoring and forecasting systems with kernel ridge regression," Renewable Energy, Elsevier, vol. 203(C), pages 113-130.
    5. Xiaodong Li & Ai Ren & Qi Li, 2022. "Exploring Patterns of Transportation-Related CO 2 Emissions Using Machine Learning Methods," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
    6. Jiapeng Cui & Feng Tan, 2022. "PLSR-Based Assessment of Soil Respiration Rate Changes under Aerated Irrigation in Relation to Soil Environmental Factors," Agriculture, MDPI, vol. 13(1), pages 1-15, December.
    7. Yan, Peiliang & Fan, Weijun & Zhang, Rongchun, 2023. "Predicting the NOx emissions of low heat value gas rich-quench-lean combustor via three integrated learning algorithms with Bayesian optimization," Energy, Elsevier, vol. 273(C).
    8. Zifan Huang & Zexia Duan & Yichi Zhang & Tianbo Ji, 2024. "Response of Sustainable Solar Photovoltaic Power Output to Summer Heatwave Events in Northern China," Sustainability, MDPI, vol. 16(12), pages 1-28, June.
    9. Tan, Daniel & Suvarna, Manu & Shee Tan, Yee & Li, Jie & Wang, Xiaonan, 2021. "A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing," Applied Energy, Elsevier, vol. 291(C).
    10. Simin Kheradmand & Nima Heidarzadeh & Seyed Hossein Kia, 2023. "Prediction of the CO2 emission across grassland and cropland using tower-based eddy covariance flux measurements: a machine learning approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5495-5509, June.
    11. Juan Luis Martín-Ortega & Javier Chornet & Ioannis Sebos & Sander Akkermans & María José López Blanco, 2024. "Enhancing Transparency of Climate Efforts: MITICA’s Integrated Approach to Greenhouse Gas Mitigation," Sustainability, MDPI, vol. 16(10), pages 1-35, May.
    12. Rao, Amar & Talan, Amogh & Abbas, Shujaat & Dev, Dhairya & Taghizadeh-Hesary, Farhad, 2023. "The role of natural resources in the management of environmental sustainability: Machine learning approach," Resources Policy, Elsevier, vol. 82(C).
    13. Li, Jie & Suvarna, Manu & Pan, Lanjia & Zhao, Yingru & Wang, Xiaonan, 2021. "A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification," Applied Energy, Elsevier, vol. 304(C).
    14. Zhang, Tao & Li, Yiteng & Chen, Yin & Feng, Xiaoyu & Zhu, Xingyu & Chen, Zhangxing & Yao, Jun & Zheng, Yongchun & Cai, Jianchao & Song, Hongqing & Sun, Shuyu, 2021. "Review on space energy," Applied Energy, Elsevier, vol. 292(C).
    15. Roy, Dibyendu & Zhu, Shunmin & Wang, Ruiqi & Mondal, Pradip & Ling-Chin, Janie & Roskilly, Anthony Paul, 2024. "Techno-economic and environmental analyses of hybrid renewable energy systems for a remote location employing machine learning models," Applied Energy, Elsevier, vol. 361(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Francisco A. Ramírez-Rivera & Néstor F. Guerrero-Rodríguez, 2024. "Ensemble Learning Algorithms for Solar Radiation Prediction in Santo Domingo: Measurements and Evaluation," Sustainability, MDPI, vol. 16(18), pages 1-27, September.
    2. Juan Luis Martín-Ortega & Javier Chornet & Ioannis Sebos & Sander Akkermans & María José López Blanco, 2024. "Enhancing Transparency of Climate Efforts: MITICA’s Integrated Approach to Greenhouse Gas Mitigation," Sustainability, MDPI, vol. 16(10), pages 1-35, May.
    3. Zhigao Zhou & Aiwen Lin & Lijie He & Lunche Wang, 2022. "Evaluation of Various Tree-Based Ensemble Models for Estimating Solar Energy Resource Potential in Different Climatic Zones of China," Energies, MDPI, vol. 15(9), pages 1-23, May.
    4. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    5. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    6. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    7. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    8. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    9. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    10. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    11. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    12. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    13. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    14. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    15. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
    16. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    17. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    18. Catherine Ikae & Jacques Savoy, 2022. "Gender identification on Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 58-69, January.
    19. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    20. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300787. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.