IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v310y2024ics036054422403041x.html
   My bibliography  Save this article

A novel high-precision and self-adaptive prediction method for ship energy consumption based on the multi-model fusion approach

Author

Listed:
  • Wang, Kai
  • Liu, Xing
  • Guo, Xin
  • Wang, Jianhang
  • Wang, Zhuang
  • Huang, Lianzhong

Abstract

The accurate prediction of energy consumption is significant for ship energy efficiency optimization. However, the existing prediction methods of ship energy consumption based on a single algorithm have limitations in adaptability and accuracy. Therefore, a novel high-precision and self-adaptive prediction method based on the multi-model fusion approach is investigated in this paper. Firstly, the data processing and analysis are carried out. Then, the Stacking-based fusion model is established and the prediction performance is analyzed. On this basis, an adaptive fusion model based on the Self-adaptive Parameter Optimization (SPO) method is established. Finally, an Intelligent Selection based Self-adaptive Hybrid (ISSH) method is proposed. The study results indicate that the proposed ISSH method can predict ship energy consumption more accurately, with the Mean Square Error (MSE) reduced by 66.7 % and the Mean Absolute Error (MAE) reduced by 12.7 % compared to the optimal single prediction model. In addition, the ISSH-based fusion model can reduce the MSE by 50.0 % and the MAE by 9.9 %, compared to the Stacking-based fusion model without parameter optimization. Moreover, the ISSH method can achieve self-adaptive prediction of ship energy consumption under diverse scenarios by adopting the intelligent selection strategy (ISS) method of basic models, which is significant to achieve dynamic optimization of ship energy efficiency.

Suggested Citation

  • Wang, Kai & Liu, Xing & Guo, Xin & Wang, Jianhang & Wang, Zhuang & Huang, Lianzhong, 2024. "A novel high-precision and self-adaptive prediction method for ship energy consumption based on the multi-model fusion approach," Energy, Elsevier, vol. 310(C).
  • Handle: RePEc:eee:energy:v:310:y:2024:i:c:s036054422403041x
    DOI: 10.1016/j.energy.2024.133265
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422403041X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2024.133265?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:310:y:2024:i:c:s036054422403041x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.