IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v372y2024ics0306261924011425.html
   My bibliography  Save this article

Fast object detection of anomaly photovoltaic (PV) cells using deep neural networks

Author

Listed:
  • Zhang, Jinlai
  • Yang, Wenjie
  • Chen, Yumei
  • Ding, Mingkang
  • Huang, Huiling
  • Wang, Bingkun
  • Gao, Kai
  • Chen, Shuhan
  • Du, Ronghua

Abstract

Anomaly detection in photovoltaic (PV) cells is crucial for ensuring the efficient operation of solar power systems and preventing potential energy losses. In this paper, we propose an enhanced YOLOv7-based deep learning framework for fast and accurate anomaly detection in PV cells. Our approach incorporates Partial Convolution, Switchable Atrous Convolution and novel data augmentation techniques to address the challenges of varying defect sizes, complex backgrounds. The Partial Convolution component effectively manages the irregularities in PV cell images, reducing false detections. On the other hand, the Switchable Atrous Convolution enhances the model’s adaptability to different defect scales and spatial resolutions, leading to improved localization and classification performance. We evaluate our model on a large-scale dataset of PV cell images, demonstrating its superiority over existing methods in terms of detection accuracy, speed, and robustness. Our proposed framework offers a practical and reliable solution for real-time anomaly detection in PV cells, facilitating timely maintenance and maximizing the performance of solar energy systems. The integration of these advanced convolution techniques into the YOLOv7 model not only improves detection capabilities but also paves the way for further research and development in the field of deep learning-based anomaly detection.

Suggested Citation

  • Zhang, Jinlai & Yang, Wenjie & Chen, Yumei & Ding, Mingkang & Huang, Huiling & Wang, Bingkun & Gao, Kai & Chen, Shuhan & Du, Ronghua, 2024. "Fast object detection of anomaly photovoltaic (PV) cells using deep neural networks," Applied Energy, Elsevier, vol. 372(C).
  • Handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011425
    DOI: 10.1016/j.apenergy.2024.123759
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924011425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123759?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eleonora Arena & Alessandro Corsini & Roberto Ferulano & Dario Alfio Iuvara & Eric Stefan Miele & Lorenzo Ricciardi Celsi & Nour Alhuda Sulieman & Massimo Villari, 2021. "Anomaly Detection in Photovoltaic Production Factories via Monte Carlo Pre-Processed Principal Component Analysis," Energies, MDPI, vol. 14(13), pages 1-16, July.
    2. Cai, Jianchao & Xu, Kai & Zhu, Yanhui & Hu, Fang & Li, Liuhuan, 2020. "Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest," Applied Energy, Elsevier, vol. 262(C).
    3. Ren, Haoshan & Xu, Chengliang & Ma, Zhenjun & Sun, Yongjun, 2022. "A novel 3D-geographic information system and deep learning integrated approach for high-accuracy building rooftop solar energy potential characterization of high-density cities," Applied Energy, Elsevier, vol. 306(PA).
    4. Silvano Vergura, 2018. "Hypothesis Tests-Based Analysis for Anomaly Detection in Photovoltaic Systems in the Absence of Environmental Parameters," Energies, MDPI, vol. 11(3), pages 1-18, February.
    5. Jumbo, Olga & Moghaddass, Ramin, 2022. "Resource optimization and image processing for vegetation management programs in power distribution networks," Applied Energy, Elsevier, vol. 319(C).
    6. Shi, Zhongtuo & Yao, Wei & Zeng, Lingkang & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Convolutional neural network-based power system transient stability assessment and instability mode prediction," Applied Energy, Elsevier, vol. 263(C).
    7. Zhang, Qisong & Yang, Lin & Guo, Wenchao & Qiang, Jiaxi & Peng, Cheng & Li, Qinyi & Deng, Zhongwei, 2022. "A deep learning method for lithium-ion battery remaining useful life prediction based on sparse segment data via cloud computing system," Energy, Elsevier, vol. 241(C).
    8. Rebecca R. Hernandez & Alona Armstrong & Jennifer Burney & Greer Ryan & Kara Moore-O’Leary & Ibrahima Diédhiou & Steven M. Grodsky & Leslie Saul-Gershenz & Rob Davis & Jordan Macknick & Dustin Mulvane, 2019. "Techno–ecological synergies of solar energy for global sustainability," Nature Sustainability, Nature, vol. 2(7), pages 560-568, July.
    9. Wenzhu Liu & Yujing Liu & Ziqiang Yang & Changqing Xu & Xiaodong Li & Shenglei Huang & Jianhua Shi & Junling Du & Anjun Han & Yuhao Yang & Guoning Xu & Jian Yu & Jiajia Ling & Jun Peng & Liping Yu & B, 2023. "Flexible solar cells based on foldable silicon wafers with blunted edges," Nature, Nature, vol. 617(7962), pages 717-723, May.
    10. Tan, Hongjun & Guo, Zhiling & Zhang, Haoran & Chen, Qi & Lin, Zhenjia & Chen, Yuntian & Yan, Jinyue, 2023. "Enhancing PV panel segmentation in remote sensing images with constraint refinement modules," Applied Energy, Elsevier, vol. 350(C).
    11. Khan, Waqas & Walker, Shalika & Zeiler, Wim, 2022. "Improved solar photovoltaic energy generation forecast using deep learning-based ensemble stacking approach," Energy, Elsevier, vol. 240(C).
    12. Xie, Jiahang & Yang, Rufan & Gooi, Hoay Beng & Nguyen, Hung Dinh, 2023. "PID-based CNN-LSTM for accuracy-boosted virtual sensor in battery thermal management system," Applied Energy, Elsevier, vol. 331(C).
    13. Nam, KiJeon & Hwangbo, Soonho & Yoo, ChangKyoo, 2020. "A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 122(C).
    14. Niu, Dongxiao & Yu, Min & Sun, Lijie & Gao, Tian & Wang, Keke, 2022. "Short-term multi-energy load forecasting for integrated energy systems based on CNN-BiGRU optimized by attention mechanism," Applied Energy, Elsevier, vol. 313(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifei Chen & Zhihan Fu, 2023. "Multi-Step Ahead Forecasting of the Energy Consumed by the Residential and Commercial Sectors in the United States Based on a Hybrid CNN-BiLSTM Model," Sustainability, MDPI, vol. 15(3), pages 1-21, January.
    2. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Lei, Zhenzhen & Zhang, Yuanjian, 2023. "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    3. Zhou, Guangzhao & Guo, Zanquan & Sun, Simin & Jin, Qingsheng, 2023. "A CNN-BiGRU-AM neural network for AI applications in shale oil production prediction," Applied Energy, Elsevier, vol. 344(C).
    4. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    5. Zhang, Yagang & Wang, Hui & Wang, Jingchao & Cheng, Xiaodan & Wang, Tong & Zhao, Zheng, 2024. "Ensemble optimization approach based on hybrid mode decomposition and intelligent technology for wind power prediction system," Energy, Elsevier, vol. 292(C).
    6. Gennadiy Stroykov & Alexey Y. Cherepovitsyn & Elizaveta A. Iamshchikova, 2020. "Powering Multiple Gas Condensate Wells in Russia’s Arctic: Power Supply Systems Based on Renewable Energy Sources," Resources, MDPI, vol. 9(11), pages 1-15, November.
    7. Li, Chen & Kies, Alexander & Zhou, Kai & Schlott, Markus & Sayed, Omar El & Bilousova, Mariia & Stöcker, Horst, 2024. "Optimal Power Flow in a highly renewable power system based on attention neural networks," Applied Energy, Elsevier, vol. 359(C).
    8. Khan, Waqas & Somers, Ward & Walker, Shalika & de Bont, Kevin & Van der Velden, Joep & Zeiler, Wim, 2023. "Comparison of electric vehicle load forecasting across different spatial levels with incorporated uncertainty estimation," Energy, Elsevier, vol. 283(C).
    9. Saima Akhtar & Sulman Shahzad & Asad Zaheer & Hafiz Sami Ullah & Heybet Kilic & Radomir Gono & Michał Jasiński & Zbigniew Leonowicz, 2023. "Short-Term Load Forecasting Models: A Review of Challenges, Progress, and the Road Ahead," Energies, MDPI, vol. 16(10), pages 1-29, May.
    10. Norouzi, Mohammadali & Aghaei, Jamshid & Niknam, Taher & Alipour, Mohammadali & Pirouzi, Sasan & Lehtonen, Matti, 2023. "Risk-averse and flexi-intelligent scheduling of microgrids based on hybrid Boltzmann machines and cascade neural network forecasting," Applied Energy, Elsevier, vol. 348(C).
    11. Gonocruz, Ruth Anne Tanlioco & Yoshida, Yoshikuni & Ozawa, Akito & Aguirre, Rodolfo A. & Maguindayao, Edward Joseph H., 2023. "Impacts of agrivoltaics in rural electrification and decarbonization in the Philippines," Applied Energy, Elsevier, vol. 350(C).
    12. Gorjian, Shiva & Bousi, Erion & Özdemir, Özal Emre & Trommsdorff, Max & Kumar, Nallapaneni Manoj & Anand, Abhishek & Kant, Karunesh & Chopra, Shauhrat S., 2022. "Progress and challenges of crop production and electricity generation in agrivoltaic systems using semi-transparent photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    13. Gustavo G. Koch & Caio R. D. Osório & Ricardo C. L. F. Oliveira & Vinícius F. Montagner, 2023. "Robust Control Based on Observed States Designed by Means of Linear Matrix Inequalities for Grid-Connected Converters," Energies, MDPI, vol. 16(4), pages 1-24, February.
    14. Zheng, Lingwei & Su, Ran & Sun, Xinyu & Guo, Siqi, 2023. "Historical PV-output characteristic extraction based weather-type classification strategy and its forecasting method for the day-ahead prediction of PV output," Energy, Elsevier, vol. 271(C).
    15. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    16. Jiang, Hou & Yao, Ling & Lu, Ning & Qin, Jun & Zhang, Xiaotong & Liu, Tang & Zhang, Xingxing & Zhou, Chenghu, 2024. "Exploring the optimization of rooftop photovoltaic scale and spatial layout under curtailment constraints," Energy, Elsevier, vol. 293(C).
    17. Guo, Zhiling & Zhuang, Zhan & Tan, Hongjun & Liu, Zhengguang & Li, Peiran & Lin, Zhengyuan & Shang, Wen-Long & Zhang, Haoran & Yan, Jinyue, 2023. "Accurate and generalizable photovoltaic panel segmentation using deep learning for imbalanced datasets," Renewable Energy, Elsevier, vol. 219(P1).
    18. Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM," Energy, Elsevier, vol. 263(PE).
    19. Hwangbo, Soonho & Heo, SungKu & Yoo, ChangKyoo, 2022. "Development of deterministic-stochastic model to integrate variable renewable energy-driven electricity and large-scale utility networks: Towards decarbonization petrochemical industry," Energy, Elsevier, vol. 238(PC).
    20. Kim, SangYoun & Heo, SungKu & Nam, KiJeon & Woo, TaeYong & Yoo, ChangKyoo, 2023. "Flexible renewable energy planning based on multi-step forecasting of interregional electricity supply and demand: Graph-enhanced AI approach," Energy, Elsevier, vol. 282(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:372:y:2024:i:c:s0306261924011425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.