IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v498y2024ics0304380024002862.html
   My bibliography  Save this article

More transparent and explainable machine learning algorithms are required to provide enhanced and sustainable dataset understanding

Author

Listed:
  • Wood, David A.

Abstract

For detailed dataset interrogation and auditing purposes the lack of dataset explainability/transparency of the majority of available machine-learning (ML) models poses limitations. There is a tendency for ML models to focus on prediction speed and accuracy at the expense of transparently revealing dataset relationships. A case is made here to broaden that focus and for ML models to offer alternative configurations tailored to provide more explanations about how individual predictions are derived. Indeed, those striving to achieve sustainable objectives should not rely on opaque ML models and seek transparency as a fundamental objective of good modelling practice (GMP). Doing so tends to boost trust and confidence in the outputs of models relating to complex socio-environmental systems (SES), particularly those being used to potentially justify controversial social, political and ethical decisions. Currently, the transparent open box algorithms (TOB) are the only ML algorithms available that are configured specifically to routinely provide detailed data record relationships for each of their predictions. This study describes the data mining benefits of the Python-coded optimized data-matching TOB algorithms generally, and when applied to environmental datasets characterized by complex non-linear relationships involving many variables.

Suggested Citation

  • Wood, David A., 2024. "More transparent and explainable machine learning algorithms are required to provide enhanced and sustainable dataset understanding," Ecological Modelling, Elsevier, vol. 498(C).
  • Handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002862
    DOI: 10.1016/j.ecolmodel.2024.110898
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380024002862
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2024.110898?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:498:y:2024:i:c:s0304380024002862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.