IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i18p8015-d1477599.html
   My bibliography  Save this article

Ensemble Learning Algorithms for Solar Radiation Prediction in Santo Domingo: Measurements and Evaluation

Author

Listed:
  • Francisco A. Ramírez-Rivera

    (Engineering Sciences, Pontificia Universidad Católica Madre y Maestra (PUCMM), Av. Abraham Lincoln Esq. Romulo Betancourt, Santo Domingo 2748, Dominican Republic)

  • Néstor F. Guerrero-Rodríguez

    (Engineering Sciences, Pontificia Universidad Católica Madre y Maestra (PUCMM), Av. Abraham Lincoln Esq. Romulo Betancourt, Santo Domingo 2748, Dominican Republic)

Abstract

Solar radiation is a fundamental parameter for solar photovoltaic (PV) technology. Reliable solar radiation prediction has become valuable for designing solar PV systems, guaranteeing their performance, operational efficiency, safety in operations, grid dispatchment, and financial planning. However, high quality ground-based solar radiation measurements are scarce, especially for very short-term time horizons. Most existing studies trained machine learning (ML) models using datasets with time horizons of 1 h or 1 day, whereas very few studies reported using a dataset with a 1 min time horizon. In this study, a comprehensive evaluation of nine ensemble learning algorithms (ELAs) was performed to estimate solar radiation in Santo Domingo with a 1 min time horizon dataset, collected from a local weather station. The ensemble learning models evaluated included seven homogeneous ensembles: Random Forest (RF), Extra Tree (ET), adaptive gradient boosting (AGB), gradient boosting (GB), extreme gradient boosting (XGB), light gradient boosting (LGBM), histogram-based gradient boosting (HGB); and two heterogeneous ensembles: voting and stacking. RF, ET, GB, and HGB were combined to develop voting and stacking ensembles, with linear regression (LR) being adopted in the second layer of the stacking ensemble. Six technical metrics, including mean squared error (MSE), root mean squared error (RMSE), relative root mean squared error (rRMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2), were used as criteria to determine the prediction quality of the developed ensemble algorithms. A comparison of the results indicates that the HGB algorithm offers superior prediction performance among the homogeneous ensemble learning models, while overall, the stacking ensemble provides the best accuracy, with metric values of MSE = 3218.27, RMSE = 56.73, rRMSE = 12.700, MAE = 29.87, MAPE = 10.60, and R2 = 0.964.

Suggested Citation

  • Francisco A. Ramírez-Rivera & Néstor F. Guerrero-Rodríguez, 2024. "Ensemble Learning Algorithms for Solar Radiation Prediction in Santo Domingo: Measurements and Evaluation," Sustainability, MDPI, vol. 16(18), pages 1-27, September.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8015-:d:1477599
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/18/8015/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/18/8015/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    2. Hassan, Muhammed A. & Khalil, A. & Kaseb, S. & Kassem, M.A., 2017. "Exploring the potential of tree-based ensemble methods in solar radiation modeling," Applied Energy, Elsevier, vol. 203(C), pages 897-916.
    3. Edna S. Solano & Carolina M. Affonso, 2023. "Solar Irradiation Forecasting Using Ensemble Voting Based on Machine Learning Algorithms," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cai, Jianchao & Xu, Kai & Zhu, Yanhui & Hu, Fang & Li, Liuhuan, 2020. "Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest," Applied Energy, Elsevier, vol. 262(C).
    2. Zhigao Zhou & Aiwen Lin & Lijie He & Lunche Wang, 2022. "Evaluation of Various Tree-Based Ensemble Models for Estimating Solar Energy Resource Potential in Different Climatic Zones of China," Energies, MDPI, vol. 15(9), pages 1-23, May.
    3. Mansoor, Umer & Jamal, Arshad & Su, Junbiao & Sze, N.N. & Chen, Anthony, 2023. "Investigating the risk factors of motorcycle crash injury severity in Pakistan: Insights and policy recommendations," Transport Policy, Elsevier, vol. 139(C), pages 21-38.
    4. Bissan Ghaddar & Ignacio Gómez-Casares & Julio González-Díaz & Brais González-Rodríguez & Beatriz Pateiro-López & Sofía Rodríguez-Ballesteros, 2023. "Learning for Spatial Branching: An Algorithm Selection Approach," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1024-1043, September.
    5. Akash Malhotra, 2018. "A hybrid econometric-machine learning approach for relative importance analysis: Prioritizing food policy," Papers 1806.04517, arXiv.org, revised Aug 2020.
    6. Nahushananda Chakravarthy H G & Karthik M Seenappa & Sujay Raghavendra Naganna & Dayananda Pruthviraja, 2023. "Machine Learning Models for the Prediction of the Compressive Strength of Self-Compacting Concrete Incorporating Incinerated Bio-Medical Waste Ash," Sustainability, MDPI, vol. 15(18), pages 1-22, September.
    7. Tim Voigt & Martin Kohlhase & Oliver Nelles, 2021. "Incremental DoE and Modeling Methodology with Gaussian Process Regression: An Industrially Applicable Approach to Incorporate Expert Knowledge," Mathematics, MDPI, vol. 9(19), pages 1-26, October.
    8. Wen, Shaoting & Buyukada, Musa & Evrendilek, Fatih & Liu, Jingyong, 2020. "Uncertainty and sensitivity analyses of co-combustion/pyrolysis of textile dyeing sludge and incense sticks: Regression and machine-learning models," Renewable Energy, Elsevier, vol. 151(C), pages 463-474.
    9. Zhu, Haibin & Bai, Lu & He, Lidan & Liu, Zhi, 2023. "Forecasting realized volatility with machine learning: Panel data perspective," Journal of Empirical Finance, Elsevier, vol. 73(C), pages 251-271.
    10. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    11. Zhang, Ning & Li, Zhiying & Zou, Xun & Quiring, Steven M., 2019. "Comparison of three short-term load forecast models in Southern California," Energy, Elsevier, vol. 189(C).
    12. Smyl, Slawek & Hua, N. Grace, 2019. "Machine learning methods for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1424-1431.
    13. Barzin,Samira & Avner,Paolo & Maruyama Rentschler,Jun Erik & O’Clery,Neave, 2022. "Where Are All the Jobs ? A Machine Learning Approach for High Resolution Urban Employment Prediction inDeveloping Countries," Policy Research Working Paper Series 9979, The World Bank.
    14. Eike Emrich & Christian Pierdzioch, 2016. "Volunteering, Match Quality, and Internet Use," Schmollers Jahrbuch : Journal of Applied Social Science Studies / Zeitschrift für Wirtschafts- und Sozialwissenschaften, Duncker & Humblot, Berlin, vol. 136(2), pages 199-226.
    15. Kusiak, Andrew & Zheng, Haiyang & Song, Zhe, 2009. "On-line monitoring of power curves," Renewable Energy, Elsevier, vol. 34(6), pages 1487-1493.
    16. Zhu, Siying & Zhu, Feng, 2019. "Cycling comfort evaluation with instrumented probe bicycle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 129(C), pages 217-231.
    17. Catherine Ikae & Jacques Savoy, 2022. "Gender identification on Twitter," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 73(1), pages 58-69, January.
    18. Barkan, Oren & Benchimol, Jonathan & Caspi, Itamar & Cohen, Eliya & Hammer, Allon & Koenigstein, Noam, 2023. "Forecasting CPI inflation components with Hierarchical Recurrent Neural Networks," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1145-1162.
    19. Martijn Kagie & Michiel Van Wezel, 2007. "Hedonic price models and indices based on boosting applied to the Dutch housing market," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 15(3‐4), pages 85-106, July.
    20. Matthias Bogaert & Michel Ballings & Dirk Van den Poel, 2018. "Evaluating the importance of different communication types in romantic tie prediction on social media," Annals of Operations Research, Springer, vol. 263(1), pages 501-527, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:18:p:8015-:d:1477599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.