IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v16y2024i10p4242-d1396929.html
   My bibliography  Save this article

Determinants of Yearly CO 2 Emission Fluctuations: A Machine Learning Perspective to Unveil Dynamics

Author

Listed:
  • Christian Mulomba Mukendi

    (Department of Advanced Convergence, Handong Global University, Pohang 37554, Republic of Korea)

  • Hyebong Choi

    (School of Global Entrepreneurship and Information Communication Technology, Handong Global University, Pohang 37554, Republic of Korea)

  • Suhui Jung

    (School of Management and Economics, Convergence, Handong Global University, Pohang 37554, Republic of Korea)

  • Yun-Seon Kim

    (Department of Global Development and Entrepreneurship, Convergence, Handong Global University, Pohang 37554, Republic of Korea)

Abstract

In order to understand the dynamics in climate change, inform policy decisions and prompt timely action to mitigate its impact, this study provides a comprehensive analysis of the short-term trend of the year-on-year CO 2 emission changes across ten countries, considering a broad range of factors including socioeconomic factors, CO 2 -related industry, and education. This study uniquely goes beyond the common country-based analysis, offering a broader understanding of the interconnected impact of CO 2 emissions across countries. Our preliminary regression analysis, using the ten most significant features, could only explain 66% of the variations in the target. To capture the emissions trend variation, we categorized countries by the change in CO 2 emission volatility (high, moderate, low with upward or downward trends), assessed using standard deviation. We employed machine learning techniques, including feature importance analysis, Partial Dependence Plots (PDPs), sensitivity analysis, and Pearson and Canonical correlation analyses, to identify influential factors driving these short-term changes. The Decision Tree Classifier was the most accurate model, with an accuracy of 96%. It revealed population size, CO 2 emissions from coal, the three-year average change in CO 2 emissions, GDP, CO 2 emissions from oil, education level (incomplete primary), and contribution to temperature rise as the most significant predictors, in order of importance. Furthermore, this study estimates the likelihood of a country transitioning to a higher emission category. Our findings provide valuable insights into the temporal dynamics of factors influencing CO 2 emissions changes, contributing to the global efforts to address climate change.

Suggested Citation

  • Christian Mulomba Mukendi & Hyebong Choi & Suhui Jung & Yun-Seon Kim, 2024. "Determinants of Yearly CO 2 Emission Fluctuations: A Machine Learning Perspective to Unveil Dynamics," Sustainability, MDPI, vol. 16(10), pages 1-28, May.
  • Handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4242-:d:1396929
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/16/10/4242/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/16/10/4242/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Jianchao & Xu, Kai & Zhu, Yanhui & Hu, Fang & Li, Liuhuan, 2020. "Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest," Applied Energy, Elsevier, vol. 262(C).
    2. M. Revan Özkale & Hüsniye Altuner, 2023. "Bootstrap confidence interval of ridge regression in linear regression model: A comparative study via a simulation study," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 52(20), pages 7405-7441, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Tao & Li, Yiteng & Chen, Yin & Feng, Xiaoyu & Zhu, Xingyu & Chen, Zhangxing & Yao, Jun & Zheng, Yongchun & Cai, Jianchao & Song, Hongqing & Sun, Shuyu, 2021. "Review on space energy," Applied Energy, Elsevier, vol. 292(C).
    2. Simin Kheradmand & Nima Heidarzadeh & Seyed Hossein Kia, 2023. "Prediction of the CO2 emission across grassland and cropland using tower-based eddy covariance flux measurements: a machine learning approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5495-5509, June.
    3. Juan Luis Martín-Ortega & Javier Chornet & Ioannis Sebos & Sander Akkermans & María José López Blanco, 2024. "Enhancing Transparency of Climate Efforts: MITICA’s Integrated Approach to Greenhouse Gas Mitigation," Sustainability, MDPI, vol. 16(10), pages 1-35, May.
    4. Roy, Dibyendu & Zhu, Shunmin & Wang, Ruiqi & Mondal, Pradip & Ling-Chin, Janie & Roskilly, Anthony Paul, 2024. "Techno-economic and environmental analyses of hybrid renewable energy systems for a remote location employing machine learning models," Applied Energy, Elsevier, vol. 361(C).
    5. Rao, Amar & Talan, Amogh & Abbas, Shujaat & Dev, Dhairya & Taghizadeh-Hesary, Farhad, 2023. "The role of natural resources in the management of environmental sustainability: Machine learning approach," Resources Policy, Elsevier, vol. 82(C).
    6. Xiaodong Li & Ai Ren & Qi Li, 2022. "Exploring Patterns of Transportation-Related CO 2 Emissions Using Machine Learning Methods," Sustainability, MDPI, vol. 14(8), pages 1-21, April.
    7. Jiapeng Cui & Feng Tan, 2022. "PLSR-Based Assessment of Soil Respiration Rate Changes under Aerated Irrigation in Relation to Soil Environmental Factors," Agriculture, MDPI, vol. 13(1), pages 1-15, December.
    8. Deo, Ravinesh C. & Ahmed, A.A. Masrur & Casillas-Pérez, David & Pourmousavi, S. Ali & Segal, Gary & Yu, Yanshan & Salcedo-Sanz, Sancho, 2023. "Cloud cover bias correction in numerical weather models for solar energy monitoring and forecasting systems with kernel ridge regression," Renewable Energy, Elsevier, vol. 203(C), pages 113-130.
    9. Tan, Daniel & Suvarna, Manu & Shee Tan, Yee & Li, Jie & Wang, Xiaonan, 2021. "A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing," Applied Energy, Elsevier, vol. 291(C).
    10. Yan, Peiliang & Fan, Weijun & Zhang, Rongchun, 2023. "Predicting the NOx emissions of low heat value gas rich-quench-lean combustor via three integrated learning algorithms with Bayesian optimization," Energy, Elsevier, vol. 273(C).
    11. Zifan Huang & Zexia Duan & Yichi Zhang & Tianbo Ji, 2024. "Response of Sustainable Solar Photovoltaic Power Output to Summer Heatwave Events in Northern China," Sustainability, MDPI, vol. 16(12), pages 1-28, June.
    12. Li, Jie & Suvarna, Manu & Pan, Lanjia & Zhao, Yingru & Wang, Xiaonan, 2021. "A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification," Applied Energy, Elsevier, vol. 304(C).
    13. Hung-Ta Wen & Jau-Huai Lu & Deng-Siang Jhang, 2021. "Features Importance Analysis of Diesel Vehicles’ NO x and CO 2 Emission Predictions in Real Road Driving Based on Gradient Boosting Regression Model," IJERPH, MDPI, vol. 18(24), pages 1-28, December.
    14. Yuling Huang & Xiaoping Lu & Chujin Zhou & Yunlin Song, 2023. "DADE-DQN: Dual Action and Dual Environment Deep Q-Network for Enhancing Stock Trading Strategy," Mathematics, MDPI, vol. 11(17), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:16:y:2024:i:10:p:4242-:d:1396929. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.