Predicting the NOx emissions of low heat value gas rich-quench-lean combustor via three integrated learning algorithms with Bayesian optimization
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.127227
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Miao, Zhuang & Chen, Xiaodong & Baležentis, Tomas, 2021. "Improving energy use and mitigating pollutant emissions across “Three Regions and Ten Urban Agglomerations”: A city-level productivity growth decomposition," Applied Energy, Elsevier, vol. 283(C).
- Nakamura, Kotaro & Muramatsu, Takehiko & Ogawa, Takashi & Nakagaki, Takao, 2021. "Prediction of de-NOx performance using monolithic SCR catalyst under load following operation of natural gas-fired combined cycle power plants," Energy, Elsevier, vol. 227(C).
- Dong, Zhikun & Chen, Yaoran & Zhou, Dai & Su, Jie & Han, Zhaolong & Cao, Yong & Bao, Yan & Zhao, Feng & Wang, Rui & Zhao, Yongsheng & Xu, Yuwang, 2022. "The mean wake model and its novel characteristic parameter of H-rotor VAWTs based on random forest method," Energy, Elsevier, vol. 239(PE).
- Cai, Jianchao & Xu, Kai & Zhu, Yanhui & Hu, Fang & Li, Liuhuan, 2020. "Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest," Applied Energy, Elsevier, vol. 262(C).
- Mollo, Malebo & Kolesnikov, Andrei & Makgato, Seshibe, 2022. "Simultaneous reduction of NOx emission and SOx emission aided by improved efficiency of a Once-Through Benson Type Coal Boiler," Energy, Elsevier, vol. 248(C).
- Wen, Yifan & Wu, Ruoxi & Zhou, Zihang & Zhang, Shaojun & Yang, Shengge & Wallington, Timothy J. & Shen, Wei & Tan, Qinwen & Deng, Ye & Wu, Ye, 2022. "A data-driven method of traffic emissions mapping with land use random forest models," Applied Energy, Elsevier, vol. 305(C).
- Roy, Rishi & Gupta, Ashwani K., 2022. "Data-driven prediction of flame temperature and pollutant emission in distributed combustion," Applied Energy, Elsevier, vol. 310(C).
- Bai, Mingliang & Yang, Xusheng & Liu, Jinfu & Liu, Jiao & Yu, Daren, 2021. "Convolutional neural network-based deep transfer learning for fault detection of gas turbine combustion chambers," Applied Energy, Elsevier, vol. 302(C).
- Li, Jianzhong & Chen, Jian & Jin, Wu & Yuan, Li & Hu, Ge, 2020. "The design and performance of a RP-3 fueled high temperature rise combustor based on RQL staged combustion," Energy, Elsevier, vol. 209(C).
- Jiang, Yu & Lee, Byoung-Hwa & Oh, Dong-Hun & Jeon, Chung-Hwan, 2022. "Influence of various air-staging on combustion and NOX emission characteristics in a tangentially fired boiler under the 50% load condition," Energy, Elsevier, vol. 244(PB).
- Park, Yeseul & Choi, Minsung & Kim, Dongmin & Lee, Joongsung & Choi, Gyungmin, 2021. "Performance analysis of large-scale industrial gas turbine considering stable combustor operation using novel blended fuel," Energy, Elsevier, vol. 236(C).
- Grochowalski, Jaroslaw & Jachymek, Piotr & Andrzejczyk, Marek & Klajny, Marcin & Widuch, Agata & Morkisz, Pawel & Hernik, Bartłomiej & Zdeb, Janusz & Adamczyk, Wojciech, 2021. "Towards application of machine learning algorithms for prediction temperature distribution within CFB boiler based on specified operating conditions," Energy, Elsevier, vol. 237(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Okeleye, Samuel Adeola & Thiruvengadam, Arvind & Perhinschi, Mario G. & Carder, Daniel, 2024. "Data-driven machine learning model of a Selective Catalytic Reduction on Filter (SCRF) in a heavy-duty diesel engine: A comparison of Artificial Neural Network with Tree-based algorithms," Energy, Elsevier, vol. 290(C).
- Qiu, Tao & Li, Ning & Lei, Yan & Sang, Hailang & Ma, Xuejian & Liu, Zedu, 2024. "Research on the method of diesel particulate filters carbon load recognition based on deep learning," Energy, Elsevier, vol. 292(C).
- Alruqi, Mansoor & Sharma, Prabhakar & Ağbulut, Ümit, 2023. "Investigations on biomass gasification derived producer gas and algal biodiesel to power a dual-fuel engines: Application of neural networks optimized with Bayesian approach and K-cross fold," Energy, Elsevier, vol. 282(C).
- Wang, Jianguo & Han, Lincheng & Zhang, Xiuyu & Wang, Yingzhou & Zhang, Shude, 2023. "Electrical load forecasting based on variable T-distribution and dual attention mechanism," Energy, Elsevier, vol. 283(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cheng, Xianda & Zheng, Haoran & Yang, Qian & Zheng, Peiying & Dong, Wei, 2023. "Surrogate model-based real-time gas path fault diagnosis for gas turbines under transient conditions," Energy, Elsevier, vol. 278(PA).
- Zhang, Xin & Chen, Zhichao & Hou, Jian & Liu, Zheng & Zeng, Lingyan & Li, Zhengqi, 2022. "Evaluation of wide-range coal combustion performance of a novel down-fired combustion technology based on gas–solid two-phase flow characteristics," Energy, Elsevier, vol. 248(C).
- Xiaodong Chen & Anda Guo & Jiahao Zhu & Fang Wang & Yanqiu He, 2022. "Accessing performance of transport sector considering risks of climate change and traffic accidents: joint bounded-adjusted measure and Luenberger decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 115-138, March.
- Liu, Jianmiao & Li, Junyi & Chen, Yong & Lian, Song & Zeng, Jiaqi & Geng, Maosi & Zheng, Sijing & Dong, Yinan & He, Yan & Huang, Pei & Zhao, Zhijian & Yan, Xiaoyu & Hu, Qinru & Wang, Lei & Yang, Di & , 2023. "Multi-scale urban passenger transportation CO2 emission calculation platform for smart mobility management," Applied Energy, Elsevier, vol. 331(C).
- Sungur, Bilal & Basar, Cem & Kaleli, Alirıza, 2023. "Multi-objective optimisation of the emission parameters and efficiency of pellet stove at different supply airflow positions based on machine learning approach," Energy, Elsevier, vol. 278(PA).
- Zhang, Tao & Li, Yiteng & Chen, Yin & Feng, Xiaoyu & Zhu, Xingyu & Chen, Zhangxing & Yao, Jun & Zheng, Yongchun & Cai, Jianchao & Song, Hongqing & Sun, Shuyu, 2021. "Review on space energy," Applied Energy, Elsevier, vol. 292(C).
- Zhang, Yagang & Zhang, Jinghui & Yu, Leyi & Pan, Zhiya & Feng, Changyou & Sun, Yiqian & Wang, Fei, 2022. "A short-term wind energy hybrid optimal prediction system with denoising and novel error correction technique," Energy, Elsevier, vol. 254(PC).
- Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
- Simin Kheradmand & Nima Heidarzadeh & Seyed Hossein Kia, 2023. "Prediction of the CO2 emission across grassland and cropland using tower-based eddy covariance flux measurements: a machine learning approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5495-5509, June.
- Kaiyuan Zheng & Ying Zhang, 2023. "Prediction and Urban Adaptivity Evaluation Model Based on Carbon Emissions: A Case Study of Six Coastal City Clusters in China," Sustainability, MDPI, vol. 15(4), pages 1-19, February.
- Li, Rui & Zhang, Jincheng & Zhao, Xiaowei, 2022. "Dynamic wind farm wake modeling based on a Bilateral Convolutional Neural Network and high-fidelity LES data," Energy, Elsevier, vol. 258(C).
- Juan Luis Martín-Ortega & Javier Chornet & Ioannis Sebos & Sander Akkermans & María José López Blanco, 2024. "Enhancing Transparency of Climate Efforts: MITICA’s Integrated Approach to Greenhouse Gas Mitigation," Sustainability, MDPI, vol. 16(10), pages 1-35, May.
- Huang, Yufeng & Tao, Jun & Zhao, Junyi & Sun, Gang & Yin, Kai & Zhai, Junyi, 2023. "Graph structure embedded with physical constraints-based information fusion network for interpretable fault diagnosis of aero-engine," Energy, Elsevier, vol. 283(C).
- Park, Yeseul & Choi, Minsung & Choi, Gyungmin, 2023. "Thermodynamic performance study of large-scale industrial gas turbine with methane/ammonia/hydrogen blended fuels," Energy, Elsevier, vol. 282(C).
- Sun, Jianing & Zhou, Tao & Wang, Di, 2022. "Relationships between urban form and air quality: A reconsideration based on evidence from China’s five urban agglomerations during the COVID-19 pandemic," Land Use Policy, Elsevier, vol. 118(C).
- Qiangyi Li & Lan Yang & Fangxin Jiang & Yangqing Liu & Chenyang Guo & Shuya Han, 2022. "Distribution Characteristics, Regional Differences and Spatial Convergence of the Water-Energy-Land-Food Nexus: A Case Study of China," Land, MDPI, vol. 11(9), pages 1-28, September.
- Miaomiao Tao & Pierre Failler & Lim Thye Goh & Wee Yeap Lau & Hanghang Dong & Liang Xie, 2022. "Quantify the Effect of China’s Emission Trading Scheme on Low-carbon Eco-efficiency: Evidence from China’s 283 Cities," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(6), pages 1-33, August.
- Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
- Long, Zhenhua & Bai, Mingliang & Ren, Minghao & Liu, Jinfu & Yu, Daren, 2023. "Fault detection and isolation of aeroengine combustion chamber based on unscented Kalman filter method fusing artificial neural network," Energy, Elsevier, vol. 272(C).
- Taler, Jan & Trojan, Marcin & Dzierwa, Piotr & Kaczmarski, Karol & Węglowski, Bohdan & Taler, Dawid & Zima, Wiesław & Grądziel, Sławomir & Ocłoń, Paweł & Sobota, Tomasz & Rerak, Monika & Jaremkiewicz,, 2023. "The flexible boiler operation in a wide range of load changes with considering the strength and environmental restrictions," Energy, Elsevier, vol. 263(PB).
More about this item
Keywords
Low heat value gas; RQL combustor; Integrated learning algorithm; NOx emission; Prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:273:y:2023:i:c:s0360544223006217. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.