Analysis of 27 supervised machine learning models for the co-gasification assessment of peanut shell and spent tea residue in an open-core downdraft gasifier
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.121318
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xing, Jiangkuan & Wang, Haiou & Luo, Kun & Wang, Shuai & Bai, Yun & Fan, Jianren, 2019. "Predictive single-step kinetic model of biomass devolatilization for CFD applications: A comparison study of empirical correlations (EC), artificial neural networks (ANN) and random forest (RF)," Renewable Energy, Elsevier, vol. 136(C), pages 104-114.
- Ramos, Ana & Monteiro, Eliseu & Silva, Valter & Rouboa, Abel, 2018. "Co-gasification and recent developments on waste-to-energy conversion: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 380-398.
- Yang, Yadong & Shahbeik, Hossein & Shafizadeh, Alireza & Rafiee, Shahin & Hafezi, Amir & Du, Xinyi & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2023. "Predicting municipal solid waste gasification using machine learning: A step toward sustainable regional planning," Energy, Elsevier, vol. 278(PB).
- Ascher, Simon & Sloan, William & Watson, Ian & You, Siming, 2022. "A comprehensive artificial neural network model for gasification process prediction," Applied Energy, Elsevier, vol. 320(C).
- Yahaya, Ahmad Zubair & Somalu, Mahendra Rao & Muchtar, Andanastuti & Sulaiman, Shaharin Anwar & Wan Daud, Wan Ramli, 2019. "Effect of particle size and temperature on gasification performance of coconut and palm kernel shells in downdraft fixed-bed reactor," Energy, Elsevier, vol. 175(C), pages 931-940.
- Qi, Jingwei & Wang, Yijie & Xu, Pengcheng & Hu, Ming & Huhe, Taoli & Ling, Xiang & Yuan, Haoran & Chen, Yong, 2024. "Study on the Co-gasification characteristics of biomass and municipal solid waste based on machine learning," Energy, Elsevier, vol. 290(C).
- Jebli, Imane & Belouadha, Fatima-Zahra & Kabbaj, Mohammed Issam & Tilioua, Amine, 2021. "Prediction of solar energy guided by pearson correlation using machine learning," Energy, Elsevier, vol. 224(C).
- Xing, Jiangkuan & Luo, Kun & Wang, Haiou & Gao, Zhengwei & Fan, Jianren, 2019. "A comprehensive study on estimating higher heating value of biomass from proximate and ultimate analysis with machine learning approaches," Energy, Elsevier, vol. 188(C).
- Onsree, Thossaporn & Tippayawong, Nakorn & Phithakkitnukoon, Santi & Lauterbach, Jochen, 2022. "Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass," Energy, Elsevier, vol. 249(C).
- Inayat, Muddasser & Sulaiman, Shaharin A. & Kurnia, Jundika Candra & Shahbaz, Muhammad, 2019. "Effect of various blended fuels on syngas quality and performance in catalytic co-gasification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 252-267.
- Silva, Isabelly P. & Lima, Rafael M.A. & Silva, Gabriel F. & Ruzene, Denise S. & Silva, Daniel P., 2019. "Thermodynamic equilibrium model based on stoichiometric method for biomass gasification: A review of model modifications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Mutlu, Ali Yener & Yucel, Ozgun, 2018. "An artificial intelligence based approach to predicting syngas composition for downdraft biomass gasification," Energy, Elsevier, vol. 165(PA), pages 895-901.
- Shahbaz, Muhammad & Taqvi, Syed A. & Minh Loy, Adrian Chun & Inayat, Abrar & Uddin, Fahim & Bokhari, Awais & Naqvi, Salman Raza, 2019. "Artificial neural network approach for the steam gasification of palm oil waste using bottom ash and CaO," Renewable Energy, Elsevier, vol. 132(C), pages 243-254.
- Elmaz, Furkan & Yücel, Özgün & Mutlu, Ali Yener, 2020. "Predictive modeling of biomass gasification with machine learning-based regression methods," Energy, Elsevier, vol. 191(C).
- Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Safarian, Sahar & Unnþórsson, Rúnar & Richter, Christiaan, 2019. "A review of biomass gasification modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 378-391.
- Devasahayam, Sheila & Albijanic, Boris, 2024. "Predicting hydrogen production from co-gasification of biomass and plastics using tree based machine learning algorithms," Renewable Energy, Elsevier, vol. 222(C).
- Christine Wallisch & Paul Bach & Lorena Hafermann & Nadja Klein & Willi Sauerbrei & Ewout W Steyerberg & Georg Heinze & Geraldine Rauch & on behalf of topic group 2 of the STRATOS initiative, 2022. "Review of guidance papers on regression modeling in statistical series of medical journals," PLOS ONE, Public Library of Science, vol. 17(1), pages 1-20, January.
- Cai, Jianchao & Xu, Kai & Zhu, Yanhui & Hu, Fang & Li, Liuhuan, 2020. "Prediction and analysis of net ecosystem carbon exchange based on gradient boosting regression and random forest," Applied Energy, Elsevier, vol. 262(C).
- Ni, Zi-hao & Li, Fa-she & Wang, Hua & Xiao, Hei, 2022. "Prediction of physical parameters of Jatropha biodiesel-ethanol dual fuel based on topological indices," Applied Energy, Elsevier, vol. 328(C).
- Gourich, Wail & Chan, Eng-Seng & Ng, Wei Zhe & Obon, Aaron Anthony & Maran, Kireshwen & Ong, Yi Hui & Lee, Chin Loong & Tan, Jully & Song, Cher Pin, 2022. "Life cycle benefits of enzymatic biodiesel co-produced in palm oil mills from sludge palm oil as renewable fuel for rural electrification," Applied Energy, Elsevier, vol. 325(C).
- Zhou, Li & Li, Fashe & Zhang, Huicong & Duan, Yaozong & Wang, Hua, 2024. "Effect of phospholipids on the oxidative reactivity and microstructure of soot particles from Jatropha biodiesel combustion," Applied Energy, Elsevier, vol. 354(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Olca, Kadriye Deniz & Yücel, Özgün, 2024. "Unveiling the potential of operating time in improving machine learning models’ performance for waste biomass gasification systems," Renewable Energy, Elsevier, vol. 237(PA).
- Büyükkanber, Kaan & Haykiri-Acma, Hanzade & Yaman, Serdar, 2023. "Calorific value prediction of coal and its optimization by machine learning based on limited samples in a wide range," Energy, Elsevier, vol. 277(C).
- Kim, Jun Young & Kim, Dongjae & Li, Zezhong John & Dariva, Claudio & Cao, Yankai & Ellis, Naoko, 2023. "Predicting and optimizing syngas production from fluidized bed biomass gasifiers: A machine learning approach," Energy, Elsevier, vol. 263(PC).
- Kim, Jun Young & Shin, Ui Hyeon & Kim, Kwangsu, 2023. "Predicting biomass composition and operating conditions in fluidized bed biomass gasifiers: An automated machine learning approach combined with cooperative game theory," Energy, Elsevier, vol. 280(C).
- Zhang, Bowei & Guo, Simao & Jin, Hui, 2022. "Production forecast analysis of BP neural network based on Yimin lignite supercritical water gasification experiment results," Energy, Elsevier, vol. 246(C).
- Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Manish Meena & Hrishikesh Kumar & Nitin Dutt Chaturvedi & Andrey A. Kovalev & Vadim Bolshev & Dmitriy A. Kovalev & Prakash Kumar Sarangi & Aakash Chawade & Manish Singh Rajput & Vivekanand Vivekanand , 2023. "Biomass Gasification and Applied Intelligent Retrieval in Modeling," Energies, MDPI, vol. 16(18), pages 1-21, September.
- Samadi, Seyed Hashem & Ghobadian, Barat & Nosrati, Mohsen, 2020. "Prediction and estimation of biomass energy from agricultural residues using air gasification technology in Iran," Renewable Energy, Elsevier, vol. 149(C), pages 1077-1091.
- Yang, Yadong & Shahbeik, Hossein & Shafizadeh, Alireza & Rafiee, Shahin & Hafezi, Amir & Du, Xinyi & Pan, Junting & Tabatabaei, Meisam & Aghbashlo, Mortaza, 2023. "Predicting municipal solid waste gasification using machine learning: A step toward sustainable regional planning," Energy, Elsevier, vol. 278(PB).
- Kargbo, Hannah O. & Zhang, Jie & Phan, Anh N., 2021. "Optimisation of two-stage biomass gasification for hydrogen production via artificial neural network," Applied Energy, Elsevier, vol. 302(C).
- Buentello-Montoya, D.A. & Duarte-Ruiz, C.A. & Maldonado-Escalante, J.F., 2023. "Co-gasification of waste PET, PP and biomass for energy recovery: A thermodynamic model to assess the produced syngas quality," Energy, Elsevier, vol. 266(C).
- Gabbrielli, Roberto & Barontini, Federica & Frigo, Stefano & Bressan, Luigi, 2022. "Numerical analysis of bio-methane production from biomass-sewage sludge oxy-steam gasification and methanation process," Applied Energy, Elsevier, vol. 307(C).
- Despina Vamvuka & Petros Tsilivakos, 2024. "Energy Recovery from Municipal Solid Waste through Co-Gasification Using Steam or Carbon Dioxide with Olive By-Products," Energies, MDPI, vol. 17(2), pages 1-13, January.
- Ayub, Yousaf & Hu, Yusha & Ren, Jingzheng, 2023. "Estimation of syngas yield in hydrothermal gasification process by application of artificial intelligence models," Renewable Energy, Elsevier, vol. 215(C).
- Qi, Jingwei & Wang, Yijie & Xu, Pengcheng & Hu, Ming & Huhe, Taoli & Ling, Xiang & Yuan, Haoran & Chen, Yong, 2024. "Study on the Co-gasification characteristics of biomass and municipal solid waste based on machine learning," Energy, Elsevier, vol. 290(C).
- Ifaei, Pouya & Nazari-Heris, Morteza & Tayerani Charmchi, Amir Saman & Asadi, Somayeh & Yoo, ChangKyoo, 2023. "Sustainable energies and machine learning: An organized review of recent applications and challenges," Energy, Elsevier, vol. 266(C).
- Onsree, Thossaporn & Tippayawong, Nakorn & Phithakkitnukoon, Santi & Lauterbach, Jochen, 2022. "Interpretable machine-learning model with a collaborative game approach to predict yields and higher heating value of torrefied biomass," Energy, Elsevier, vol. 249(C).
- Ascher, Simon & Sloan, William & Watson, Ian & You, Siming, 2022. "A comprehensive artificial neural network model for gasification process prediction," Applied Energy, Elsevier, vol. 320(C).
- Md Sumon Reza & Zhanar Baktybaevna Iskakova & Shammya Afroze & Kairat Kuterbekov & Asset Kabyshev & Kenzhebatyr Zh. Bekmyrza & Marzhan M. Kubenova & Muhammad Saifullah Abu Bakar & Abul K. Azad & Hrido, 2023. "Influence of Catalyst on the Yield and Quality of Bio-Oil for the Catalytic Pyrolysis of Biomass: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-39, July.
- Ajorloo, Mojtaba & Ghodrat, Maryam & Scott, Jason & Strezov, Vladimir, 2022. "Modelling and statistical analysis of plastic biomass mixture co-gasification," Energy, Elsevier, vol. 256(C).
More about this item
Keywords
Machine learning models; Biomass co-gasification; Supervised learning; Performance metrics; Higher heating value; AI-Based prediction;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:235:y:2024:i:c:s0960148124013867. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.