IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v262y2020ics0306261920300507.html
   My bibliography  Save this article

Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions

Author

Listed:
  • Zhang, Wenbin
  • Zhang, Zhou
  • Ma, Xiao
  • Awad, Omar I.
  • Li, Yanfei
  • Shuai, Shijin
  • Xu, Hongming

Abstract

Gasoline direct injection (GDI) engine development is facing the great challenges in both fuel economy and particulate emissions. Trade-off is often required in GDI engines to sacrifice fuel economy in order to meet the strict emission regulations. GDI injector deposits have been identified as a potential cause of increased particulate emissions. In this work, a series of experimental tests was conducted on a 1.5 L turbocharged GDI engine to further understand the effect of injector deposits. The deposits formed on the injector tip surface were removed after the 55-hour fouling test and their effects on fuel consumption, in-cylinder combustion, thermal efficiency and engine out emissions were investigated before and after the removal. The spray characteristics of an identical injector under clean and fouled conditions were examined and the deposits inside the injector nozzle holes were observed by a scanning electron microscope. The test injectors were mildly fouled with an average of 1.5% flow rate loss and 1.84% injection pulse width increase. After removing the injector tip surface deposits, the engine combustion phase became advanced and the peak in-cylinder pressure increased. The combustion efficiency was close to 98% and showed no significant change. Although the indicated thermal efficiency was only slightly improved by 0.31–0.44% after removing the tip surface deposits, the particulate emissions were significantly affected and reduced by up to around 45%. At the meantime, NOx emissions moderately increased by approximately 12% after removal and no significant change occurred in the THC and CO emissions.

Suggested Citation

  • Zhang, Wenbin & Zhang, Zhou & Ma, Xiao & Awad, Omar I. & Li, Yanfei & Shuai, Shijin & Xu, Hongming, 2020. "Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions," Applied Energy, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300507
    DOI: 10.1016/j.apenergy.2020.114538
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920300507
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.114538?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Bo & Jiang, Yizhou & Hutchins, Peter & Badawy, Tawfik & Xu, Hongming & Zhang, Xinyu & Rack, Alexander & Tafforeau, Paul, 2017. "Numerical analysis of deposit effect on nozzle flow and spray characteristics of GDI injectors," Applied Energy, Elsevier, vol. 204(C), pages 1215-1224.
    2. Liu, Haoye & Wang, Chongming & Yu, Yusong & Xu, Hongming & Ma, Xiao, 2020. "An experimental study on particle evolution in the exhaust gas of a direct injection SI engine," Applied Energy, Elsevier, vol. 260(C).
    3. Bonatesta, F. & Chiappetta, E. & La Rocca, A., 2014. "Part-load particulate matter from a GDI engine and the connection with combustion characteristics," Applied Energy, Elsevier, vol. 124(C), pages 366-376.
    4. Badawy, Tawfik & Attar, Mohammadreza Anbari & Xu, Hongming & Ghafourian, Akbar, 2018. "Assessment of gasoline direct injector fouling effects on fuel injection, engine performance and emissions," Applied Energy, Elsevier, vol. 220(C), pages 351-374.
    5. Jiang, Changzhao & Xu, Hongming & Srivastava, Dhananjay & Ma, Xiao & Dearn, Karl & Cracknell, Roger & Krueger-Venus, Jens, 2017. "Effect of fuel injector deposit on spray characteristics, gaseous emissions and particulate matter in a gasoline direct injection engine," Applied Energy, Elsevier, vol. 203(C), pages 390-402.
    6. Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
    7. Badawy, Tawfik & Attar, Mohammadreza Anbari & Hutchins, Peter & Xu, Hongming & Krueger Venus, Jens & Cracknell, Roger, 2018. "Investigation of injector coking effects on spray characteristic and engine performance in gasoline direct injection engines," Applied Energy, Elsevier, vol. 220(C), pages 375-394.
    8. Liu, Haoye & Wang, Zhi & Wang, Jianxin & He, Xin, 2016. "Improvement of emission characteristics and thermal efficiency in diesel engines by fueling gasoline/diesel/PODEn blends," Energy, Elsevier, vol. 97(C), pages 105-112.
    9. Wang, Ziman & Jiang, Changzhao & Xu, Hongming & Badawy, Tawfik & Wang, Bo & Jiang, Yizhou, 2017. "The influence of flash boiling conditions on spray characteristics with closely coupled split injection strategy," Applied Energy, Elsevier, vol. 187(C), pages 523-533.
    10. He, Liqiang & Hu, Jingnan & Zhang, Shaojun & Wu, Ye & Zhu, Rencheng & Zu, Lei & Bao, Xiaofeng & Lai, Yitu & Su, Sheng, 2018. "The impact from the direct injection and multi-port fuel injection technologies for gasoline vehicles on solid particle number and black carbon emissions," Applied Energy, Elsevier, vol. 226(C), pages 819-826.
    11. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    12. Slavchov, Radomir I. & Mosbach, Sebastian & Kraft, Markus & Pearson, Richard & Filip, Sorin V., 2018. "An adsorption-precipitation model for the formation of injector external deposits in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1423-1438.
    13. Qian, Yong & Li, Zilong & Yu, Liang & Wang, Xiaole & Lu, Xingcai, 2019. "Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines," Applied Energy, Elsevier, vol. 238(C), pages 1269-1298.
    14. Hergueta, C. & Tsolakis, A. & Herreros, J.M. & Bogarra, M. & Price, E. & Simmance, K. & York, A.P.E. & Thompsett, D., 2018. "Impact of bio-alcohol fuels combustion on particulate matter morphology from efficient gasoline direct injection engines," Applied Energy, Elsevier, vol. 230(C), pages 794-802.
    15. Wang, Buyu & Mosbach, Sebastian & Schmutzhard, Sebastian & Shuai, Shijin & Huang, Yaqing & Kraft, Markus, 2016. "Modelling soot formation from wall films in a gasoline direct injection engine using a detailed population balance model," Applied Energy, Elsevier, vol. 163(C), pages 154-166.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ireneusz Pielecha & Zbigniew Stępień & Filip Szwajca & Grzegorz Kinal, 2022. "Effectiveness of Butanol and Deposit Control Additive in Fuel to Reduce Deposits of Gasoline Direct Injection Engine Injectors," Energies, MDPI, vol. 16(1), pages 1-18, December.
    2. Zbigniew Stępień & Ireneusz Pielecha & Filip Szwajca & Wojciech Cieślik, 2022. "Effects of Ethanol Admixtures with Gasoline on Fuel Atomization Characteristics Using High-Pressure Injectors," Energies, MDPI, vol. 15(8), pages 1-18, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Changzhao & Parker, Matthew C. & Butcher, Daniel & Spencer, Adrian & Garner, Colin P. & Helie, Jerome, 2019. "Comparison of flash boiling resistance of two injector designs and the consequences on downsized gasoline engine emissions," Applied Energy, Elsevier, vol. 254(C).
    2. Qian, Yong & Li, Zilong & Yu, Liang & Wang, Xiaole & Lu, Xingcai, 2019. "Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines," Applied Energy, Elsevier, vol. 238(C), pages 1269-1298.
    3. Slavchov, Radomir I. & Mosbach, Sebastian & Kraft, Markus & Pearson, Richard & Filip, Sorin V., 2018. "An adsorption-precipitation model for the formation of injector external deposits in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1423-1438.
    4. Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
    5. Badawy, Tawfik & Attar, Mohammadreza Anbari & Hutchins, Peter & Xu, Hongming & Krueger Venus, Jens & Cracknell, Roger, 2018. "Investigation of injector coking effects on spray characteristic and engine performance in gasoline direct injection engines," Applied Energy, Elsevier, vol. 220(C), pages 375-394.
    6. Costa, M. & Catapano, F. & Sementa, P. & Sorge, U. & Vaglieco, B.M., 2016. "Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine," Applied Energy, Elsevier, vol. 180(C), pages 86-103.
    7. Badawy, Tawfik & Attar, Mohammadreza Anbari & Xu, Hongming & Ghafourian, Akbar, 2018. "Assessment of gasoline direct injector fouling effects on fuel injection, engine performance and emissions," Applied Energy, Elsevier, vol. 220(C), pages 351-374.
    8. Kangjin Kim & Wonyong Chung & Myungsoo Kim & Charyung Kim & Cha-Lee Myung & Simsoo Park, 2020. "Inspection of PN, CO 2 , and Regulated Gaseous Emissions Characteristics from a GDI Vehicle under Various Real-World Vehicle Test Modes," Energies, MDPI, vol. 13(10), pages 1-17, May.
    9. Gao, Zhiming & Curran, Scott J. & Parks, James E. & Smith, David E. & Wagner, Robert M. & Daw, C. Stuart & Edwards, K. Dean & Thomas, John F., 2015. "Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles," Applied Energy, Elsevier, vol. 157(C), pages 762-776.
    10. Yu, Shenghao & Yin, Bifeng & Bi, Qinsheng & Chen, Chen & Jia, Hekun, 2021. "Experimental and numerical investigation on inner flow and spray characteristics of elliptical GDI injectors with large aspect ratio," Energy, Elsevier, vol. 224(C).
    11. Tara Larsson & Senthil Krishnan Mahendar & Anders Christiansen-Erlandsson & Ulf Olofsson, 2021. "The Effect of Pure Oxygenated Biofuels on Efficiency and Emissions in a Gasoline Optimised DISI Engine," Energies, MDPI, vol. 14(13), pages 1-24, June.
    12. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Zbigniew Stępień & Ireneusz Pielecha & Filip Szwajca & Wojciech Cieślik, 2022. "Effects of Ethanol Admixtures with Gasoline on Fuel Atomization Characteristics Using High-Pressure Injectors," Energies, MDPI, vol. 15(8), pages 1-18, April.
    14. Bermúdez, Vicente & Luján, José Manuel & Climent, Héctor & Campos, Daniel, 2015. "Assessment of pollutants emission and aftertreatment efficiency in a GTDi engine including cooled LP-EGR system under different steady-state operating conditions," Applied Energy, Elsevier, vol. 158(C), pages 459-473.
    15. Liu, Zengbin & Zhen, Xudong & Geng, Jie & Tian, Zhi, 2024. "Effects of injection timing on mixture formation, combustion, and emission characteristics in a n-butanol direct injection spark ignition engine," Energy, Elsevier, vol. 295(C).
    16. Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
    17. Davide D. Sciortino & Fabrizio Bonatesta & Edward Hopkins & Changho Yang & Denise Morrey, 2017. "A Combined Experimental and Computational Fluid Dynamics Investigation of Particulate Matter Emissions from a Wall-Guided Gasoline Direct Injection Engine," Energies, MDPI, vol. 10(9), pages 1-27, September.
    18. Jiang, Changzhao & Xu, Hongming & Srivastava, Dhananjay & Ma, Xiao & Dearn, Karl & Cracknell, Roger & Krueger-Venus, Jens, 2017. "Effect of fuel injector deposit on spray characteristics, gaseous emissions and particulate matter in a gasoline direct injection engine," Applied Energy, Elsevier, vol. 203(C), pages 390-402.
    19. Anbari Attar, Mohammadreza & Xu, Hongming, 2016. "Experimental investigation of impacts of engine hardware, operating parameters and combustion performance on particulate emissions in a DISI engine," Applied Energy, Elsevier, vol. 177(C), pages 703-715.
    20. Fan, Qinhao & Liu, Shang & Qi, Yunliang & Cai, Kaiyuan & Wang, Zhi, 2021. "Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to compression-ignition (SICI) engine," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:262:y:2020:i:c:s0306261920300507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.