Effect of fuel injector deposit on spray characteristics, gaseous emissions and particulate matter in a gasoline direct injection engine
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2017.06.020
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Wang, Bo & Jiang, Yizhou & Hutchins, Peter & Badawy, Tawfik & Xu, Hongming & Zhang, Xinyu & Rack, Alexander & Tafforeau, Paul, 2017. "Numerical analysis of deposit effect on nozzle flow and spray characteristics of GDI injectors," Applied Energy, Elsevier, vol. 204(C), pages 1215-1224.
- Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zheng, Yuanzhou & Shadloo, Mostafa Safdari & Nasiri, Hossein & Maleki, Akbar & Karimipour, Arash & Tlili, Iskander, 2020. "Prediction of viscosity of biodiesel blends using various artificial model and comparison with empirical correlations," Renewable Energy, Elsevier, vol. 153(C), pages 1296-1306.
- Liu, Zengbin & Zhen, Xudong & Geng, Jie & Tian, Zhi, 2024. "Effects of injection timing on mixture formation, combustion, and emission characteristics in a n-butanol direct injection spark ignition engine," Energy, Elsevier, vol. 295(C).
- Zuo, Qingsong & Xie, Yong & Zhu, Guohui & Wei, Kexiang & Zhang, Bin & Chen, Wei & Tang, Yuanyou & Wang, Zhiqi, 2021. "Investigations on a new C-GPFs with electric heating for enhancing the integrated regeneration performance under critical parameters," Energy, Elsevier, vol. 225(C).
- Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
- Zhang, Wenbin & Zhang, Zhou & Ma, Xiao & Awad, Omar I. & Li, Yanfei & Shuai, Shijin & Xu, Hongming, 2020. "Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions," Applied Energy, Elsevier, vol. 262(C).
- Duan, Xiongbo & Liu, Jingping & Yuan, Zhipeng & Guo, Genmiao & Liu, Qi & Tang, Qijun & Deng, Banglin & Guan, Jinhuan, 2018. "Experimental investigation of the effects of injection strategies on cycle-to-cycle variations of a DISI engine fueled with ethanol and gasoline blend," Energy, Elsevier, vol. 165(PB), pages 455-470.
- Badawy, Tawfik & Attar, Mohammadreza Anbari & Hutchins, Peter & Xu, Hongming & Krueger Venus, Jens & Cracknell, Roger, 2018. "Investigation of injector coking effects on spray characteristic and engine performance in gasoline direct injection engines," Applied Energy, Elsevier, vol. 220(C), pages 375-394.
- Slavchov, Radomir I. & Mosbach, Sebastian & Kraft, Markus & Pearson, Richard & Filip, Sorin V., 2018. "An adsorption-precipitation model for the formation of injector external deposits in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1423-1438.
- Zbigniew Stępień & Ireneusz Pielecha & Filip Szwajca & Wojciech Cieślik, 2022. "Effects of Ethanol Admixtures with Gasoline on Fuel Atomization Characteristics Using High-Pressure Injectors," Energies, MDPI, vol. 15(8), pages 1-18, April.
- Jiang, Changzhao & Parker, Matthew C. & Butcher, Daniel & Spencer, Adrian & Garner, Colin P. & Helie, Jerome, 2019. "Comparison of flash boiling resistance of two injector designs and the consequences on downsized gasoline engine emissions," Applied Energy, Elsevier, vol. 254(C).
- Qian, Yong & Li, Zilong & Yu, Liang & Wang, Xiaole & Lu, Xingcai, 2019. "Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines," Applied Energy, Elsevier, vol. 238(C), pages 1269-1298.
- Badawy, Tawfik & Attar, Mohammadreza Anbari & Xu, Hongming & Ghafourian, Akbar, 2018. "Assessment of gasoline direct injector fouling effects on fuel injection, engine performance and emissions," Applied Energy, Elsevier, vol. 220(C), pages 351-374.
- Duan, Xiongbo & Liu, Jingping & Tan, Yonghao & Luo, Baojun & Guo, Genmiao & Wu, Zhenkuo & Liu, Weiqiang & Li, Yangyang, 2018. "Influence of single injection and two-stagnation injection strategy on thermodynamic process and performance of a turbocharged direct-injection spark-ignition engine fuelled with ethanol and gasoline ," Applied Energy, Elsevier, vol. 228(C), pages 942-953.
- Salvo, Orlando de & Vaz de Almeida, Flávio G., 2019. "Influence of technologies on energy efficiency results of official Brazilian tests of vehicle energy consumption," Applied Energy, Elsevier, vol. 241(C), pages 98-112.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Badawy, Tawfik & Attar, Mohammadreza Anbari & Xu, Hongming & Ghafourian, Akbar, 2018. "Assessment of gasoline direct injector fouling effects on fuel injection, engine performance and emissions," Applied Energy, Elsevier, vol. 220(C), pages 351-374.
- Slavchov, Radomir I. & Mosbach, Sebastian & Kraft, Markus & Pearson, Richard & Filip, Sorin V., 2018. "An adsorption-precipitation model for the formation of injector external deposits in internal combustion engines," Applied Energy, Elsevier, vol. 228(C), pages 1423-1438.
- Badawy, Tawfik & Attar, Mohammadreza Anbari & Hutchins, Peter & Xu, Hongming & Krueger Venus, Jens & Cracknell, Roger, 2018. "Investigation of injector coking effects on spray characteristic and engine performance in gasoline direct injection engines," Applied Energy, Elsevier, vol. 220(C), pages 375-394.
- Zhang, Wenbin & Zhang, Zhou & Ma, Xiao & Awad, Omar I. & Li, Yanfei & Shuai, Shijin & Xu, Hongming, 2020. "Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions," Applied Energy, Elsevier, vol. 262(C).
- Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
- Yu, Shenghao & Yin, Bifeng & Bi, Qinsheng & Chen, Chen & Jia, Hekun, 2021. "Experimental and numerical investigation on inner flow and spray characteristics of elliptical GDI injectors with large aspect ratio," Energy, Elsevier, vol. 224(C).
- Tara Larsson & Senthil Krishnan Mahendar & Anders Christiansen-Erlandsson & Ulf Olofsson, 2021. "The Effect of Pure Oxygenated Biofuels on Efficiency and Emissions in a Gasoline Optimised DISI Engine," Energies, MDPI, vol. 14(13), pages 1-24, June.
- Krishna, Addepalli S. & Mallikarjuna, J.M. & Kumar, Davinder, 2016. "Effect of engine parameters on in-cylinder flows in a two-stroke gasoline direct injection engine," Applied Energy, Elsevier, vol. 176(C), pages 282-294.
- Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
- Liu, Zengbin & Zhen, Xudong & Geng, Jie & Tian, Zhi, 2024. "Effects of injection timing on mixture formation, combustion, and emission characteristics in a n-butanol direct injection spark ignition engine," Energy, Elsevier, vol. 295(C).
- Xu, Leilei & Bai, Xue-Song & Jia, Ming & Qian, Yong & Qiao, Xinqi & Lu, Xingcai, 2018. "Experimental and modeling study of liquid fuel injection and combustion in diesel engines with a common rail injection system," Applied Energy, Elsevier, vol. 230(C), pages 287-304.
- Mohsin Raza & Longfei Chen & Felix Leach & Shiting Ding, 2018. "A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques," Energies, MDPI, vol. 11(6), pages 1-26, June.
- Costa, M. & Catapano, F. & Sementa, P. & Sorge, U. & Vaglieco, B.M., 2016. "Mixture preparation and combustion in a GDI engine under stoichiometric or lean charge: an experimental and numerical study on an optically accessible engine," Applied Energy, Elsevier, vol. 180(C), pages 86-103.
- Demesoukas, Sokratis & Brequigny, Pierre & Caillol, Christian & Halter, Fabien & Mounaïm-Rousselle, Christine, 2016. "0D modeling aspects of flame stretch in spark ignition engines and comparison with experimental results," Applied Energy, Elsevier, vol. 179(C), pages 401-412.
- Liu, Haoye & Wang, Chongming & Yu, Yusong & Xu, Hongming & Ma, Xiao, 2020. "An experimental study on particle evolution in the exhaust gas of a direct injection SI engine," Applied Energy, Elsevier, vol. 260(C).
- Anbari Attar, Mohammadreza & Xu, Hongming, 2016. "Experimental investigation of impacts of engine hardware, operating parameters and combustion performance on particulate emissions in a DISI engine," Applied Energy, Elsevier, vol. 177(C), pages 703-715.
- Fan, Qinhao & Liu, Shang & Qi, Yunliang & Cai, Kaiyuan & Wang, Zhi, 2021. "Investigation into ethanol effects on combustion and particle number emissions in a spark-ignition to compression-ignition (SICI) engine," Energy, Elsevier, vol. 233(C).
- Del Pecchia, Marco & Fontanesi, Stefano & Prager, Jens & Kralj, Cedomir & Lehtiniemi, Harry, 2020. "A threshold soot index-based fuel surrogate formulation methodology to mimic sooting tendency of real fuels in 3D-CFD simulations," Applied Energy, Elsevier, vol. 280(C).
- Gao, Zhiming & Curran, Scott J. & Parks, James E. & Smith, David E. & Wagner, Robert M. & Daw, C. Stuart & Edwards, K. Dean & Thomas, John F., 2015. "Drive cycle simulation of high efficiency combustions on fuel economy and exhaust properties in light-duty vehicles," Applied Energy, Elsevier, vol. 157(C), pages 762-776.
- Liu, Zengbin & Zhen, Xudong & Tian, Zhi & Liu, Daming & Wang, Yang, 2024. "Study on the effect of injection strategy on the combustion and emission characteristics of direct injection spark ignition bio-butanol engine," Energy, Elsevier, vol. 289(C).
More about this item
Keywords
Deposits; Particulate matter; Gasoline direct injection; Spray characteristics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:203:y:2017:i:c:p:390-402. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.