IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v261y2020ics0306261919320409.html
   My bibliography  Save this article

China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization

Author

Listed:
  • Zhang, Xi
  • Geng, Yong
  • Shao, Shuai
  • Wilson, Jeffrey
  • Song, Xiaoqian
  • You, Wei

Abstract

China has pledged to peak its carbon dioxide (CO2) emissions and lower its CO2 intensity by 60–65% from the 2005 level by 2030. Understanding the role of energy structural adjustment in achieving such targets is critical along with China’s rapid urbanization process. This study aims to uncover the drivers of China’s non-fossil energy development during 1990–2016, and conduct scenarios and probability analyses of different energy consumption and CO2 emission trajectories until 2050. Results show that economic scale plays a key role with urbanization identified as an essential factor in driving non-fossil energy development. The consumption of fossil fuels will continue to increase with rapid urbanization, leading to higher CO2 emissions. China will only achieve the 2030 targets if energy structural adjustment is completed on schedule. Under the current policies, CO2 emissions may peak between 2030 and 2032, while CO2 intensity will decrease. Such findings provide valuable insights and suggest that China should achieve low carbon transition through energy structural adjustment, while taking urbanization as an opportunity.

Suggested Citation

  • Zhang, Xi & Geng, Yong & Shao, Shuai & Wilson, Jeffrey & Song, Xiaoqian & You, Wei, 2020. "China’s non-fossil energy development and its 2030 CO2 reduction targets: The role of urbanization," Applied Energy, Elsevier, vol. 261(C).
  • Handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320409
    DOI: 10.1016/j.apenergy.2019.114353
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919320409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.114353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Niknam, Taher & Azizipanah-Abarghooee, Rasoul & Narimani, Mohammad Rasoul, 2012. "An efficient scenario-based stochastic programming framework for multi-objective optimal micro-grid operation," Applied Energy, Elsevier, vol. 99(C), pages 455-470.
    2. Li, Ke & Zhang, Ning & Liu, Yanchu, 2016. "The energy rebound effects across China’s industrial sectors: An output distance function approach," Applied Energy, Elsevier, vol. 184(C), pages 1165-1175.
    3. Wu, Rui & Geng, Yong & Cui, Xiaowei & Gao, Ziyan & Liu, Zhiqing, 2019. "Reasons for recent stagnancy of carbon emissions in China's industrial sectors," Energy, Elsevier, vol. 172(C), pages 457-466.
    4. Vaninsky, Alexander, 2014. "Factorial decomposition of CO2 emissions: A generalized Divisia index approach," Energy Economics, Elsevier, vol. 45(C), pages 389-400.
    5. Shao, Shuai & Liu, Jianghua & Geng, Yong & Miao, Zhuang & Yang, Yingchun, 2016. "Uncovering driving factors of carbon emissions from China’s mining sector," Applied Energy, Elsevier, vol. 166(C), pages 220-238.
    6. Shahbaz, Muhammad & Lean, Hooi Hooi, 2012. "Does financial development increase energy consumption? The role of industrialization and urbanization in Tunisia," Energy Policy, Elsevier, vol. 40(C), pages 473-479.
    7. Wang, Miao & Feng, Chao, 2017. "Decomposition of energy-related CO2 emissions in China: An empirical analysis based on provincial panel data of three sectors," Applied Energy, Elsevier, vol. 190(C), pages 772-787.
    8. Apergis, Nicholas & Payne, James E., 2010. "Renewable energy consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(1), pages 656-660, January.
    9. O'Neill, Brian C. & Ren, Xiaolin & Jiang, Leiwen & Dalton, Michael, 2012. "The effect of urbanization on energy use in India and China in the iPETS model," Energy Economics, Elsevier, vol. 34(S3), pages 339-345.
    10. Qi, Ye & Stern, Nicholas & Wu, Tong & Lu, Jiaqi & Green, Fergus, 2016. "China's post-coal growth," LSE Research Online Documents on Economics 67503, London School of Economics and Political Science, LSE Library.
    11. Shao, Shuai & Huang, Tao & Yang, Lili, 2014. "Using latent variable approach to estimate China׳s economy-wide energy rebound effect over 1954–2010," Energy Policy, Elsevier, vol. 72(C), pages 235-248.
    12. Lin, Boqiang & Wang, Ting, 2012. "Forecasting natural gas supply in China: Production peak and import trends," Energy Policy, Elsevier, vol. 49(C), pages 225-233.
    13. Wang, Yafei & Liang, Sai, 2013. "Carbon dioxide mitigation target of China in 2020 and key economic sectors," Energy Policy, Elsevier, vol. 58(C), pages 90-96.
    14. Elzen, Michel den & Fekete, Hanna & Höhne, Niklas & Admiraal, Annemiek & Forsell, Nicklas & Hof, Andries F. & Olivier, Jos G.J. & Roelfsema, Mark & van Soest, Heleen, 2016. "Greenhouse gas emissions from current and enhanced policies of China until 2030: Can emissions peak before 2030?," Energy Policy, Elsevier, vol. 89(C), pages 224-236.
    15. Lipp, Judith, 2007. "Lessons for effective renewable electricity policy from Denmark, Germany and the United Kingdom," Energy Policy, Elsevier, vol. 35(11), pages 5481-5495, November.
    16. Marques, António C. & Fuinhas, José A. & Pires Manso, J.R., 2010. "Motivations driving renewable energy in European countries: A panel data approach," Energy Policy, Elsevier, vol. 38(11), pages 6877-6885, November.
    17. Kangyin Dong & Xiucheng Dong & Cong Dong, 2019. "Determinants of the global and regional CO2 emissions: What causes what and where?," Applied Economics, Taylor & Francis Journals, vol. 51(46), pages 5031-5044, October.
    18. Al-mulali, Usama & Binti Che Sab, Che Normee & Fereidouni, Hassan Gholipour, 2012. "Exploring the bi-directional long run relationship between urbanization, energy consumption, and carbon dioxide emission," Energy, Elsevier, vol. 46(1), pages 156-167.
    19. Nan Zhou & Nina Khanna & Wei Feng & Jing Ke & Mark Levine, 2018. "Scenarios of energy efficiency and CO2 emissions reduction potential in the buildings sector in China to year 2050," Nature Energy, Nature, vol. 3(11), pages 978-984, November.
    20. Ren, Shenggang & Yuan, Baolong & Ma, Xie & Chen, Xiaohong, 2014. "The impact of international trade on China׳s industrial carbon emissions since its entry into WTO," Energy Policy, Elsevier, vol. 69(C), pages 624-634.
    21. Ming, Zeng & Ximei, Liu & Yulong, Li & Lilin, Peng, 2014. "Review of renewable energy investment and financing in China: Status, mode, issues and countermeasures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 23-37.
    22. N. W. Arnell & J. A. Lowe & S. Brown & S. N. Gosling & P. Gottschalk & J. Hinkel & B. Lloyd-Hughes & R. J. Nicholls & T. J. Osborn & T. M. Osborne & G. A. Rose & P. Smith & R. F. Warren, 2013. "A global assessment of the effects of climate policy on the impacts of climate change," Nature Climate Change, Nature, vol. 3(5), pages 512-519, May.
    23. Zhou, Sheng & Tong, Qing & Yu, Sha & Wang, Yu & Chai, Qimin & Zhang, Xiliang, 2012. "Role of non-fossil energy in meeting China's energy and climate target for 2020," Energy Policy, Elsevier, vol. 51(C), pages 14-19.
    24. Ewing, Bradley T. & Payne, James E. & Caporin, Massimilano, 2022. "The Asymmetric Impact of Oil Prices and Production on Drilling Rig Trajectory: A correction," Resources Policy, Elsevier, vol. 79(C).
    25. Zhuang Miao & Tomas Baležentis & Zhihua Tian & Shuai Shao & Yong Geng & Rui Wu, 2019. "Environmental Performance and Regulation Effect of China’s Atmospheric Pollutant Emissions: Evidence from “Three Regions and Ten Urban Agglomerations”," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(1), pages 211-242, September.
    26. Zhu Liu & Dabo Guan & Scott Moore & Henry Lee & Jun Su & Qiang Zhang, 2015. "Climate policy: Steps to China's carbon peak," Nature, Nature, vol. 522(7556), pages 279-281, June.
    27. Apergis, Nicholas & Payne, James E., 2010. "Coal consumption and economic growth: Evidence from a panel of OECD countries," Energy Policy, Elsevier, vol. 38(3), pages 1353-1359, March.
    28. Lin, Boqiang & Moubarak, Mohamed, 2013. "Decomposition analysis: Change of carbon dioxide emissions in the Chinese textile industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 389-396.
    29. Eugene A. Rosa & Thomas Dietz, 2012. "Human drivers of national greenhouse-gas emissions," Nature Climate Change, Nature, vol. 2(8), pages 581-586, August.
    30. Dai, Hancheng & Masui, Toshihiko & Matsuoka, Yuzuru & Fujimori, Shinichiro, 2011. "Assessment of China's climate commitment and non-fossil energy plan towards 2020 using hybrid AIM/CGE model," Energy Policy, Elsevier, vol. 39(5), pages 2875-2887, May.
    31. Ravallion, Martin & Chen, Shaohua, 2007. "China's (uneven) progress against poverty," Journal of Development Economics, Elsevier, vol. 82(1), pages 1-42, January.
    32. Wang, Qiang, 2014. "Effects of urbanisation on energy consumption in China," Energy Policy, Elsevier, vol. 65(C), pages 332-339.
    33. Ang, B.W. & Zhang, F.Q., 2000. "A survey of index decomposition analysis in energy and environmental studies," Energy, Elsevier, vol. 25(12), pages 1149-1176.
    34. Zhang, Sufang & Andrews-Speed, Philip & Li, Sitao, 2018. "To what extent will China's ongoing electricity market reforms assist the integration of renewable energy?," Energy Policy, Elsevier, vol. 114(C), pages 165-172.
    35. Biying Yu & Yi-Ming Wei & Kei Gomi & Yuzuru Matsuoka, 2018. "Future scenarios for energy consumption and carbon emissions due to demographic transitions in Chinese households," Nature Energy, Nature, vol. 3(2), pages 109-118, February.
    36. Dai, Hancheng & Xie, Xuxuan & Xie, Yang & Liu, Jian & Masui, Toshihiko, 2016. "Green growth: The economic impacts of large-scale renewable energy development in China," Applied Energy, Elsevier, vol. 162(C), pages 435-449.
    37. Poumanyvong, Phetkeo & Kaneko, Shinji, 2010. "Does urbanization lead to less energy use and lower CO2 emissions? A cross-country analysis," Ecological Economics, Elsevier, vol. 70(2), pages 434-444, December.
    38. Roger M. Cooke, 2015. "Messaging climate change uncertainty," Nature Climate Change, Nature, vol. 5(1), pages 8-10, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Xi & Geng, Yong & Shao, Shuai & Dong, Huijuan & Wu, Rui & Yao, Tianli & Song, Jiekun, 2020. "How to achieve China’s CO2 emission reduction targets by provincial efforts? – An analysis based on generalized Divisia index and dynamic scenario simulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 127(C).
    2. Wang, Shaojian & Li, Guangdong & Fang, Chuanglin, 2018. "Urbanization, economic growth, energy consumption, and CO2 emissions: Empirical evidence from countries with different income levels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2144-2159.
    3. Li, Ke & Lin, Boqiang, 2015. "Impacts of urbanization and industrialization on energy consumption/CO2 emissions: Does the level of development matter?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1107-1122.
    4. Smyth, Russell & Narayan, Paresh Kumar, 2015. "Applied econometrics and implications for energy economics research," Energy Economics, Elsevier, vol. 50(C), pages 351-358.
    5. Wang, Qiang & Wu, Shi-dai & Zeng, Yue-e & Wu, Bo-wei, 2016. "Exploring the relationship between urbanization, energy consumption, and CO2 emissions in different provinces of China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1563-1579.
    6. Wang, Qiang & Zhang, Fuyu, 2021. "Free trade and renewable energy: A cross-income levels empirical investigation using two trade openness measures," Renewable Energy, Elsevier, vol. 168(C), pages 1027-1039.
    7. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    8. Wang, Shaojian & Fang, Chuanglin & Guan, Xingliang & Pang, Bo & Ma, Haitao, 2014. "Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces," Applied Energy, Elsevier, vol. 136(C), pages 738-749.
    9. Olanrewaju, Busayo T. & Olubusoye, Olusanya E. & Adenikinju, Adeola & Akintande, Olalekan J., 2019. "A panel data analysis of renewable energy consumption in Africa," Renewable Energy, Elsevier, vol. 140(C), pages 668-679.
    10. Lv, Zhike & Liu, Wangxin & Xu, Ting, 2022. "Evaluating the impact of information and communication technology on renewable energy consumption: A spatial econometric approach," Renewable Energy, Elsevier, vol. 189(C), pages 1-12.
    11. Qamruzzaman, Md & Jianguo, Wei, 2020. "The asymmetric relationship between financial development, trade openness, foreign capital flows, and renewable energy consumption: Fresh evidence from panel NARDL investigation," Renewable Energy, Elsevier, vol. 159(C), pages 827-842.
    12. Marra, Alessandro & Colantonio, Emiliano, 2021. "The path to renewable energy consumption in the European Union through drivers and barriers: A panel vector autoregressive approach," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    13. Radmehr, Riza & Henneberry, Shida Rastegari & Shayanmehr, Samira, 2021. "Renewable Energy Consumption, CO2 Emissions, and Economic Growth Nexus: A Simultaneity Spatial Modeling Analysis of EU Countries," Structural Change and Economic Dynamics, Elsevier, vol. 57(C), pages 13-27.
    14. Shahbaz, Muhammad & Chaudhary, A.R. & Ozturk, Ilhan, 2017. "Does urbanization cause increasing energy demand in Pakistan? Empirical evidence from STIRPAT model," Energy, Elsevier, vol. 122(C), pages 83-93.
    15. Moutinho, Victor & Moreira, António Carrizo & Silva, Pedro Miguel, 2015. "The driving forces of change in energy-related CO2 emissions in Eastern, Western, Northern and Southern Europe: The LMDI approach to decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1485-1499.
    16. Tiba, Sofien & Frikha, Mohamed, 2018. "Income, trade openness and energy interactions: Evidence from simultaneous equation modeling," Energy, Elsevier, vol. 147(C), pages 799-811.
    17. Jia Liu & Jizu Li & Xilong Yao, 2019. "The Economic Effects of the Development of the Renewable Energy Industry in China," Energies, MDPI, vol. 12(9), pages 1-18, May.
    18. Fang, Kai & Li, Chenglin & Tang, Yiqi & He, Jianjian & Song, Junnian, 2022. "China’s pathways to peak carbon emissions: New insights from various industrial sectors," Applied Energy, Elsevier, vol. 306(PA).
    19. Shuddhasattwa Rafiq & Ruhul Salim & Nicholas Apergis, 2016. "Agriculture, trade openness and emissions: an empirical analysis and policy options," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 60(3), pages 348-365, July.
    20. Acheampong, Alex O. & Dzator, Janet & Savage, David A., 2021. "Renewable energy, CO2 emissions and economic growth in sub-Saharan Africa: Does institutional quality matter?," Journal of Policy Modeling, Elsevier, vol. 43(5), pages 1070-1093.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:261:y:2020:i:c:s0306261919320409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.