IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v230y2018icp794-802.html
   My bibliography  Save this article

Impact of bio-alcohol fuels combustion on particulate matter morphology from efficient gasoline direct injection engines

Author

Listed:
  • Hergueta, C.
  • Tsolakis, A.
  • Herreros, J.M.
  • Bogarra, M.
  • Price, E.
  • Simmance, K.
  • York, A.P.E.
  • Thompsett, D.

Abstract

The requirements for controlling particulate emissions in gasoline direct injection (GDI) engines, particularly in hybrid vehicles (where frequent cold-start event impact on both, particles characteristics and catalytic aftertreament efficiency), nesesitates the need for understanding their formation mechanism and their morphological characteristics. The findings described in this investigation have significance in the design of efficient Gasoline Particulate Filters (GPFs) and the development of computational models that predict particle filtration and oxidation processes.

Suggested Citation

  • Hergueta, C. & Tsolakis, A. & Herreros, J.M. & Bogarra, M. & Price, E. & Simmance, K. & York, A.P.E. & Thompsett, D., 2018. "Impact of bio-alcohol fuels combustion on particulate matter morphology from efficient gasoline direct injection engines," Applied Energy, Elsevier, vol. 230(C), pages 794-802.
  • Handle: RePEc:eee:appene:v:230:y:2018:i:c:p:794-802
    DOI: 10.1016/j.apenergy.2018.08.076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261918312352
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2018.08.076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Storch, Michael & Hinrichsen, Florian & Wensing, Michael & Will, Stefan & Zigan, Lars, 2015. "The effect of ethanol blending on mixture formation, combustion and soot emission studied in an optical DISI engine," Applied Energy, Elsevier, vol. 156(C), pages 783-792.
    2. Heyne, Stefan & Harvey, Simon, 2013. "Assessment of the energy and economic performance of second generation biofuel production processes using energy market scenarios," Applied Energy, Elsevier, vol. 101(C), pages 203-212.
    3. Fayad, M.A. & Tsolakis, A. & Fernández-Rodríguez, D. & Herreros, J.M. & Martos, F.J. & Lapuerta, M., 2017. "Manipulating modern diesel engine particulate emission characteristics through butanol fuel blending and fuel injection strategies for efficient diesel oxidation catalysts," Applied Energy, Elsevier, vol. 190(C), pages 490-500.
    4. Bogarra, M. & Herreros, J.M. & Tsolakis, A. & York, A.P.E. & Millington, P.J., 2016. "Study of particulate matter and gaseous emissions in gasoline direct injection engine using on-board exhaust gas fuel reforming," Applied Energy, Elsevier, vol. 180(C), pages 245-255.
    5. Duan, Xiongbo & Liu, Jingping & Tan, Yonghao & Luo, Baojun & Guo, Genmiao & Wu, Zhenkuo & Liu, Weiqiang & Li, Yangyang, 2018. "Influence of single injection and two-stagnation injection strategy on thermodynamic process and performance of a turbocharged direct-injection spark-ignition engine fuelled with ethanol and gasoline ," Applied Energy, Elsevier, vol. 228(C), pages 942-953.
    6. Irimescu, A. & Marchitto, L. & Merola, S.S. & Tornatore, C. & Valentino, G., 2015. "Combustion process investigations in an optically accessible DISI engine fuelled with n-butanol during part load operation," Renewable Energy, Elsevier, vol. 77(C), pages 363-376.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Wenbin & Zhang, Zhou & Ma, Xiao & Awad, Omar I. & Li, Yanfei & Shuai, Shijin & Xu, Hongming, 2020. "Impact of injector tip deposits on gasoline direct injection engine combustion, fuel economy and emissions," Applied Energy, Elsevier, vol. 262(C).
    2. Yu, Xiumin & Guo, Zezhou & Sun, Ping & Wang, Sen & Li, Anshi & Yang, Hang & Li, Zhe & Liu, Ze & Li, Jingyuan & Shang, Zhen, 2019. "Investigation of combustion and emissions of an SI engine with ethanol port injection and gasoline direct injection under lean burn conditions," Energy, Elsevier, vol. 189(C).
    3. Jiang, Changzhao & Parker, Matthew C. & Butcher, Daniel & Spencer, Adrian & Garner, Colin P. & Helie, Jerome, 2019. "Comparison of flash boiling resistance of two injector designs and the consequences on downsized gasoline engine emissions," Applied Energy, Elsevier, vol. 254(C).
    4. Mardani, Moloud & Tsolakis, Athanasios & Nozari, Hadi & Martin Herreros, Jose & Wahbi, Ammar & Sittichompoo, Sak, 2021. "Synergies in renewable fuels and exhaust heat thermochemical recovery in low carbon vehicles," Applied Energy, Elsevier, vol. 302(C).
    5. Felipe Andrade Torres & Omid Doustdar & Jose Martin Herreros & Runzhao Li & Robert Poku & Athanasios Tsolakis & Jorge Martins & Silvio A. B. Vieira de Melo, 2021. "A Comparative Study of Biofuels and Fischer–Tropsch Diesel Blends on the Engine Combustion Performance for Reducing Exhaust Gaseous and Particulate Emissions," Energies, MDPI, vol. 14(6), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qian, Yong & Li, Zilong & Yu, Liang & Wang, Xiaole & Lu, Xingcai, 2019. "Review of the state-of-the-art of particulate matter emissions from modern gasoline fueled engines," Applied Energy, Elsevier, vol. 238(C), pages 1269-1298.
    2. Giovanni Cecere & Adrian Irimescu & Simona Silvia Merola & Luciano Rolando & Federico Millo, 2022. "Lean Burn Flame Kernel Characterization for Different Spark Plug Designs and Orientations in an Optical GDI Engine," Energies, MDPI, vol. 15(9), pages 1-17, May.
    3. Manju Dhakad Tanwar & Felipe Andrade Torres & Ali Mubarak Alqahtani & Pankaj Kumar Tanwar & Yashas Bhand & Omid Doustdar, 2023. "Promising Bioalcohols for Low-Emission Vehicles," Energies, MDPI, vol. 16(2), pages 1-22, January.
    4. Nabi, M.N. & Rasul, M.G. & Rahman, S.M.A. & Dowell, Ashley & Ristovski, Z.D. & Brown, R.J., 2019. "Study of performance, combustion and emission characteristics of a common rail diesel engine with tea tree oil-diglyme blends," Energy, Elsevier, vol. 180(C), pages 216-228.
    5. García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago & Rückert Roso, Vinícius & Duarte Souza Alvarenga Santos, Nathália, 2020. "Potential of bio-ethanol in different advanced combustion modes for hybrid passenger vehicles," Renewable Energy, Elsevier, vol. 150(C), pages 58-77.
    6. Wei, Haiqiao & Feng, Dengquan & Pan, Mingzhang & Pan, JiaYing & Rao, XiaoKang & Gao, Dongzhi, 2016. "Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine," Applied Energy, Elsevier, vol. 175(C), pages 346-355.
    7. Liu, Zengbin & Zhen, Xudong & Tian, Zhi & Liu, Daming & Wang, Yang, 2024. "Study on the effect of injection strategy on the combustion and emission characteristics of direct injection spark ignition bio-butanol engine," Energy, Elsevier, vol. 289(C).
    8. Lee, Ziyoung & Park, Sungwook, 2020. "Particulate and gaseous emissions from a direct-injection spark ignition engine fueled with bioethanol and gasoline blends at ultra-high injection pressure," Renewable Energy, Elsevier, vol. 149(C), pages 80-90.
    9. David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
    10. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.
    11. Simona Silvia Merola & Adrian Irimescu & Silvana Di Iorio & Bianca Maria Vaglieco, 2017. "Effect of Fuel Injection Strategy on the Carbonaceous Structure Formation and Nanoparticle Emission in a DISI Engine Fuelled with Butanol," Energies, MDPI, vol. 10(7), pages 1-19, June.
    12. Ghadikolaei, Meisam Ahmadi & Wong, Pak Kin & Cheung, Chun Shun & Ning, Zhi & Yung, Ka-Fu & Zhao, Jing & Gali, Nirmal Kumar & Berenjestanaki, Alireza Valipour, 2021. "Impact of lower and higher alcohols on the physicochemical properties of particulate matter from diesel engines: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    13. Srinidhi, Campli & Madhusudhan, A. & Channapattana, S.V. & Gawali, S.V. & Aithal, Kiran, 2021. "RSM based parameter optimization of CI engine fuelled with nickel oxide dosed Azadirachta indica methyl ester," Energy, Elsevier, vol. 234(C).
    14. Pashchenko, Dmitry, 2019. "Pressure drop in the thermochemical recuperators filled with the catalysts of various shapes: A combined experimental and numerical investigation," Energy, Elsevier, vol. 166(C), pages 462-470.
    15. Whittaker, Carly & Borrion, Aiduan Li & Newnes, Linda & McManus, Marcelle, 2014. "The renewable energy directive and cereal residues," Applied Energy, Elsevier, vol. 122(C), pages 207-215.
    16. Duan, Xiongbo & Xu, Zhengxin & Sun, Xingyu & Deng, Banglin & Liu, Jingping, 2021. "Effects of injection timing and EGR on combustion and emissions characteristics of the diesel engine fuelled with acetone–butanol–ethanol/diesel blend fuels," Energy, Elsevier, vol. 231(C).
    17. Wu, Shaohua & Yang, Wenming & Xu, Hongpeng & Jiang, Yu, 2019. "Investigation of soot aggregate formation and oxidation in compression ignition engines with a pseudo bi-variate soot model," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    18. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    19. Fayad, Mohammed A. & Tsolakis, Athanasios & Martos, Francisco J., 2020. "Influence of alternative fuels on combustion and characteristics of particulate matter morphology in a compression ignition diesel engine," Renewable Energy, Elsevier, vol. 149(C), pages 962-969.
    20. Mao, Dongxu & Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Shen, Zhaojie & Cui, Wenzheng & Wong, Pak Kin, 2020. "Influence of alternative fuels on the particulate matter micro and nano-structures, volatility and oxidation reactivity in a compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:230:y:2018:i:c:p:794-802. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.